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Abstract 
 
Psychophysical measurement was first used for scientific purposes more than 2000 years ago. 
Its development is overviewed to the present days with emphasis on the most promising lead. 
 
 

Psychophysical measurement was used for scientific purposes for the first time 
by Hipparchus of Rhodes around 150 BCE. We reach this conclusion as follows. 

In his encyclopedia Naturalis Historia (about 80 CE) Pliny the Elder wrote the 
following: “Hipparchus the foresaid Philosopher (a man never sufficiently praised, as who 
proved the affinitie of starres with men, and none more than he, affirming also, that our soules 
were parcell of heaven) found out and observed another new starre engendred in his time, and 
by the motion thereof on what day it first shone, he grew presently into a doubt, Whether it 
happened not very often that new starres should arise? and whether those starres also mooved 
not, which we imagine to be fast fixed? The same man went so farre, that he attempted (a 
thing even hard for God to performe) to deliver unto posteritie the just number of starres. Hee 
brought the said starres within the compasse of rule and art, devising certaine instruments to 
take their severall places, and set out their magnitudes: that thereby it might be easily dis-
cerned, not only whether the old died, and new were borne, but also whether they moved, and 
which way they tooke their course? likewise, whether they encreased or decreased? Thus he 
left the inheritance of heaven unto all men, if any one haply could be found able to enter upon 
it as lawfull heire” (Book II, Ch. 26, in Holland, 1601). 

Thus Hipparchus recorded positions and magnitudes of stars to allow posterity 
to determine not only whether old stars had died and new stars were born but also whether 
stars had moved and whether their magnitude had changed. Pliny the Elder says that Hip-
parchus measured star position by instruments. He does not say how Hipparchus measured 
stellar magnitude. We can obtain the missing information from Ptolemy’s star catalogue pub-
lished in the Almagest (about 150 CE) since this catalogue used most probably earlier work 
by Hipparchus that is now lost. The catalogue gives coordinates and magnitudes of many 
stars. Stellar magnitude is “the class” (Book 7, Ch. 4, in Toomer, 1984) to which a star be-
longs in terms of perceived brightness. As we know, stellar magnitudes vary from I (brightest) 
to VI (dimmest). 

Hipparchus could only measure perceived brightness since he had no photome-
ter. For this he resolved to use category rating, apparently the most natural method of mental 
measurement. Variants of this method were subsequently used to measure magnitudes of stars 
in the telescope (Hearnshaw, 1996). 

In 1740, Celsius and Tulenius were the first to obtain photometric measures of 
relative starlight intensity (Weaver, 1946) but it was only in the early 1800’s that John Her-
schel (1829, p. 182) and Steinheil (1837) could provide sufficiently accurate measures. Their 
measurements showed for the first time that the relation between rated stellar brightness and 
physical relative starlight intensity was approximately logarithmic (Hearnshaw, 1996, p. 76). 

In 1840, Plateau measured perceived lightness using his well-known method of 
bisection (Plateau, 1872). The method consists in defining an initial sensory interval delimited 
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by two largely different perceived magnitudes of a sensation and by having a person produce 
equidifferent perceived magnitudes that divide the initial interval in equal subintervals. Each 
of these subintervals is taken as the mental unit of measurement. 

Fechner (1860) proposed the following method for measuring those perceived 
sensations that co-vary with a known physical variable. For each fixed value of the physical 
variable, S, one determines the increment ∆s of S that produces the smallest possible differ-
ence in the sensation. The smallest possible difference in sensation is assumed to be invariant 
with S. One determines the best-fitting function relating ∆s to S, called the Weber function. 
With S0 denoting the minimum S that evokes a sensation, one adds ∆s to S0, to the S resulting 
from this first addition, to the S resulting from this second addition, and so on, each time us-
ing the Weber function to select the ∆s to be added to a new S. The number of additions of ∆s 
to S0 necessary to reach the S that produces the perceived magnitude being measured is the 
measure of this magnitude. Each addition defines one mental unit of measurement. 

In 1887, Fechner argued that the rating method, the bisection method, and his 
own method produce acceptable measures of perceived sensation. He also argued that his own 
method should be preferable since it produces ratio-scale measures while the rating and bisec-
tion methods produce interval-scale measures (Scheerer, 1987). 

Merkel (1888) and Fullerton and Cattell (1892) proposed the method of meas-
urement in which a person selects a variable stimulus such that its perceived magnitude is in a 
fixed ratio with that of a standard stimulus. The perceived magnitude of the standard defines 
the mental unit of measurement. The bisection and Merkel’s methods assume people’s ability 
to judge the equalities of differences and of ratios of perceived magnitudes, respectively. 

In 1921, Brown and Thomson set forth the central idea of the method of meas-
urement today called nonmetric scaling: “To take a simple example, suppose five quantities a, 
b, c, d, e have really the measures 10, 16, 20, 31, 32.” Have a person ignorant of these meas-
ures rank first differences |a – b|, |b – c|, |c – d|, ... , second differences |d – c| – |b – a|, |c – b| – 
|e – d|, |b – a| – |c – b| ... , or even third differences. “If now we could have all these [rankings] 
we could space out the original quantities very closely indeed to their true positions. This can 
be best seen by attempting to alter some one of the values while leaving all [rankings] unal-
tered. Make d, for example, 29 instead of 31 and although the order a, b, c, d, e is unchanged, 
and also the order of the first differences, that of the second differences is completely altered 
(Brown & Thomson, 1921, p. 12).” The method is prohibitive since it requires a large number 
of stimulus trials even using only first differences (Shepard, 1966). 

The methods of bisection, of Fechner, and of Merkel can only apply to mental 
variables that co-vary with a known physical variable. The usefulness of these methods is thus 
very limited. On the other hand, the rating method applies to any mental variable. 

In 1929, these facts must have prompted Richardson to propose direct numeri-
cal magnitude estimation (Richardson, 1929a; Richardson & Ross, 1930) and graphic rating 
(Richardson, 1929b) to measure any mental magnitude. He measured strength of imagery by 
magnitude estimation, and saturation of red by graphic rating. Before, De Marchi (1925) used 
magnitude estimation to measure visual dot density. Magnitude estimation assumes that peo-
ple can judge sensory ratios. Since the 1930s, Richardson’s methods and variants thereof have 
been widely used up to today (Gescheider, 1997; Marks & Algom, 1998; Stevens, 1975). 

The validity of the above methods depends on the truth at least of the most rel-
evant assumptions on which they are based. The problem is that this truth is hard to ascertain. 
Most relevant assumptions are the abilities to equalize perceived differences in rating, bisec-
tion, Fechner’s method, and nonmetric scaling and to judge sensory ratios in Merkel’s and 
Richardson’s methods and variants thereof. It is believed that one can test these assumptions 
by first axiomatically formalizing the operations that underlie the methods and then use these 
formalizations to draw empirically testable logico-mathematical consequences (Luce, 1972, 
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2002). Examples are the axiomatic formalizations of bisection (Pfanzagl, 1959), Fechner’s 
method (Falmagne, 1985), and ratio judgment (Narens, 1996) among many others. 

Unfortunately, tests derived from axiomatic formalizations involve serious dif-
ficulties. (i) Doubts about the truth of assumptions are transferred to the logico-mathematical 
consequences of the formalization. That is, the conclusion is reached that a method is valid or 
invalid based only on the trust one is willing to put in the correctness of the formalization. For 
example, Pfanzagl (1959) gave an axiomatic formalization of the bisection operation yielding 
the logico-mathematical consequence called bisymmetry condition. For about 50 years it has 
been given for granted that empirically testing the bisymmetry condition was fundamental to 
establish the validity of the method (Falmagne, 1974; Luce & Galanter, 1963). Instead, this 
condition is totally irrelevant for the purpose of testing this validity: it applies indifferently to 
any relative magnitude a person arbitrarily chooses to divide an interval (Masin & Toffalini, 
2009). (ii ) Tests of axioms derived from axiomatic formalizations are ordinal tests. They suf-
fer from order effect. For example, given the sensory intensities a, b, and c, Fagot and Stewart 
(1969) had persons judge the ratios Rab = a / b, Rbc = b / c, and Rac = a / c. Consistent ratio 
judgments imply Rac = Rab ⋅ Rbc. It turned out that Rac ≠ Rab ⋅ Rbc. This inequality could depend 
on order effects rather than revealing inability to judge sensory ratios. Control of order effects 
is inherently flawed since we ignore how the size of effects varies with stimulus intensity and 
with presentation order. (iii ) Various other arguments conclude that the significance of axio-
matic formalizations in psychology is virtually nil (Anderson, 1981, pp. 349–353; Cliff, 1992; 
Estes 1975; Schönemann, 1994) 

How can one then determine the validity of a method of psychophysical meas-
urement given that all available evidence indicates that tests based on axioms are insufficient? 
One answer comes from functional measurement theory (Anderson, 1982, pp. 246–251). 

Our scientific knowledge about nature accrues through a continuous process of 
formulating tentative theories and critically testing them by selected methods of measurement. 
Although theories may survive critical tests, they remain theories and can only asymptotically 
be established as true by this converging corroboration (Popper, 1963). Since a law is a theory 
about a mathematical relation between variables and is tested by measurement methods that 
one selects among various other possible methods, validating the law and selecting its method 
of measurement are two related aspects of the same process of corroboration (Ellis, 1966). A 
method of measurement is tentatively valid when it yields measures for the variables involved 
in a (tentatively valid) law that are in the same mathematical relation as that which defines the 
law. The method is increasingly corroborated as it progressively agrees with other newly dis-
covered laws. The following is an example of this corroboration process, analogous to the one 
in Anderson & Cuneo (1978). For other validation tests see Anderson (1996, pp. 94–96). 

A large body of data from many judgment tasks indicates that people integrate 
information using mental operations such as adding, multiplying, averaging, weighted averag-
ing, etc. (Anderson, 1981, 1996). It is theorized that since we are evolutionarily adapted to the 
everyday empirical world we integrate information about empirical physical phenomena using 
mental operations for information integration that match the mathematical relations between 
the variables involved in the respective empirical physical laws, as if we intuitively knew the-
se laws (Anderson, 1983). This theory and its measurement methods are simultaneously vali-
dated by a corroboration process whose initial steps are as those exemplified next. 

Consider a flat object on a horizontal board with object and board covered with 
sandpaper. The minimum force necessary to slide the object on the board is proportional to 
the sum of the grit numbers of the sandpapers of object and board. For each factorial combi-
nation of these grit numbers, and with object and board kept separate, Corneli and Vicovaro 
(2007) had persons rate the imagined friction of the object on the board after each person had 
felt with their fingers how coarse the surfaces of object and board were. Figure 1a shows mean 
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Fig. 1. Mean rated imagined friction against mean object functional coarseness (a) and func-
tional heaviness (b), parameter: board coarseness (Corneli & Vicovaro, 2007); (c) mean rated 
length against mean estimated length (Masin, 2008); (d) mean estimated imagined elongation 
against mean object functional heaviness, parameter: spring length (Cocco & Masin, 2010). 
 
 
rated friction against mean object functional coarseness for each board coarseness. [The mean 
of the mean ratings corresponding to each object coarseness is a mean functional measure of 
that felt object coarseness (Anderson, 1982, p. 58)]. The results agree with physical law. 

These results tentatively support the theory that people implicitly know the ad-
ditive physical law of friction and simultaneously validate the rating method used to measure 
imagined friction. The results suggest that ratings are linear measures of imagined friction. 

These conclusions are tentative since they rest on one step only of the converg-
ing corroboration process. Some have misinterpreted that this process ends with this first step. 
For example, Gigerenzer and Richter (1990) argued that the same results may obtain if people 
multiply felt object coarseness by felt board coarseness and if ratings are logarithmic rather 
than linear measures of imagined friction. The next step overcomes this misinterpretation. 

The minimum physical force needed to slide the object on the board equals the 
product of object weight by the friction coefficient. For each factorial combination of object 
weight and board coarseness, and with object and board kept separate, Corneli and Vicovaro 
(2007) had persons rate the imagined friction of the object on the board after they hefted the 
object and felt how coarse the board surface was. Figure 1b shows mean rated friction plotted 
against mean object functional heaviness for each board. The results agree with physical law. 

These results further support the validity of the aforesaid theory and its meas-
urement method―both tests involved the same method and the same measured variable but a 
different cognitive law. They reconfirm that ratings are linear measures: had ratings been log-
arithmic measures, factorial curves would have been parallel rather than being divergent. 

Methods that yield linear measures are equivalent. This equivalence may hold 
only for some tasks. For example, ratings of average lightness are linear and nonequivalent to 
magnitude estimates (Weiss, 1972). On the other hand, for lengths in the range 2–68 cm, the 
results in Figure 1c show that ratings and magnitude estimates of apparent length are equiva-
lent measures (Masin, 2008). Length estimation can thus be used to validate the above theory. 

For a spring of length L hanging vertically, a load of weight W suspended from 
its lower end causes spring length to increase from L to L + E. The elongation E is propor-
tional to the product L ⋅ W. For different factorial combinations of L and W, Cocco and Masin 
(2010) had persons lift a load with their hands and, simultaneously, look at a spring and rate 
the imagined elongation of the spring that would occur in case the load was suspended on the 
lower end of the spring. Figure 1d shows the factorial curves relating mean estimated elonga-
tion to mean load functional heaviness for different Ls. The results agree with physical law. 

These results reconfirm the validity of the aforesaid theory of implicit physical 
knowledge and its measurement method. They also further reconfirm that ratings and magni-
tude estimates of length are linear measures. This process of corroboration continues. 
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Convergent corroboration appears to be the only viable process of validation of 
psychophysical measurement. It is consequently desirable that more attempts are made at dis-
covering and interrelating new cognitive laws such as those described above. 
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