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Averaging models have been proposed within the framework of In-
formation Integration Theory (Anderson, 1965). Nowadays, these models 
are applied in several psychological areas. However, statistical problems 
such as divergence, uniqueness, and goodness of fit arise from parameter 
identification. To deal with these issues, Anderson (1981, 1982) suggested 
the method of sub-designs, capable of providing theoretically valid estima-
tions. Using the empirical results obtained by this approach, Zalinski (1984, 
1987) offered a statistical procedure for the estimation of weights and scale 
values in averaging models. This procedure can be primarily applied when 
a full factorial design is followed by all its sub-designs; it considers a sub-
set of the possible averaging models, and the software permits to manage 
data from one subject and one session at a time. Moreover, Wang and Yang 
(1998) noted that, although this procedure was carefully designed to allow 
for proper tests of statistical significance especially involving the Chi-
square test, it does not involve validation criteria for the estimated weights 
and scale values as, for example, the information criterion. 

The present paper proposes a new method which allows considering 
the results of all the acceptable sub-design experimental conditions with a 
new statistical procedure to improve the estimation of weights and scale 
values and to provide validation criteria. 

 
 
Averaging models 
 
Let R denote the integrated response produced by an individual to the 

different scale values, si, of a single stimulus variable and let wi denote the 
weight representing the importance of these values. The weighted averag-
ing model states that 
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that is, R is a weighted sum of values divided by the sum of weights. 

In Equation 1 the effect of stimuli may depend on the amount of the 
initial state, with the same stimulus having opposite effects depending on 
whether its scale value is larger or less than the present response. The initial 
state of the process is represented by w0 and s0. The initial state enables the 
model to take account of the set-size effect in which pieces of added infor-
mation of equal value can produce a more extreme response. As a conse-
quence of the initial state, the response to a single stimulus is not usually a 
linear function of its scale value. That is, Equation 1 implies that R is not 
usually a linear function of the scale value si. 

If all levels of a factor have the same weight, then this factor is said to 
be equally-weighted. The sum of weights in the denominator has the same 
value in each cell of the design and can be absorbed into an arbitrary scale 
unit. Accordingly, this model has a linear form. Essentially, all the well 
known methods to analyze linear models apply directly to the equal weight 
averaging model (EAM). Thus, the averaging model is easy to test when 
the equal-weight condition is met.  

In some situations, evidences indicate that some up to almost all levels 
of a given factor may have different weights. A family of several models 
can be described starting from the EAM up to a model in which all the lev-
els differ in weight from one another.  

The EAM model may not be the best solution to explain crossover ef-
fects, i.e., the observed interactions among experimental factors. This prob-
lem can be solved by adding one parameter to the model, that is, by chang-
ing the importance of a single weight. The introduction of a new parameter 
makes the model more complex, generally providing better goodness of fit 
indexes especially for the residual sum of squares, but it decreases the de-
grees of freedom of the model itself. This model is usually called differen-
tial weighting model. By adding other parameters, the overall fit may not 
be improved, although the complexity increases while the degrees of free-
dom decrease. The most complex situation is the complete differential 
weight averaging model (complete DAM) in which all weights differ for 
each level and for each factor. 

An important complication arises with unequal weighting within one 
single attribute dimension (Oden & Anderson, 1971). The complete DAM 
allows each stimulus to have its own weight as well as its own scale value. 
The sum of absolute weights in the denominator of Equation 1 is variable 
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from cell to cell and the model becomes inherently non linear. It is now 
necessary to estimate weights and scale values for each stimulus level of 
one or more factors. That is, instead of a single weight for each factor, a 
weight is estimated for each level of each factor. While weights and scale 
values are still identifiable, this non-linearity introduces statistical problems 
concerning bias, convergence, reliability, and goodness of fit. It requires a 
suitable methodology (Zalinski & Anderson, 1990). 

 
 
Method of sub-designs 
 
A general problem in estimation concerns identifiability and unique-

ness. In a linear model applied to a factorial design, for example, weights 
are not generally identifiable since they are usually confounded with scale 
units. With a suitable design, averaging models can provide ratio-scale es-
timates of weight and linear-scale estimates of scale values. On the basis of 
these scaling results, valid statistical comparisons can be made among es-
timated weights and estimated scale values (Zalinski, 1987).  

A proper experimental design is necessary for a unique parameter es-
timation. According to Anderson (2001), the general method to obtain com-
plete identifiability of all parameters is to adjoin selected sub-designs to a 
full factorial design. This method allows us to obtain more observations 
from the factorial design, and parameter estimation can be performed on 
several observations. In general, providing more observed data increases 
the degrees of freedom, the estimation is more stable, and the measurement 
error is reduced. 

 
 
Procedures 
 
Average 
Starting from the RECIPE procedure (Birnbaum, 1976), Zalinski 

(1984, 1987) presented a procedure suitable for the estimation of weights 
and scale values for the EAM and the complete DAM, providing reliable 
estimations with complete data from the full-factorial design when accom-
panied by all the sub-designs. 

For each subject, the AVERAGE program (Zalinski & Anderson, 
1986) generates an absolute weight and a scale value for each level of fac-
tors, and a single weight and a single scale value for the initial impression 
(complete DAM case). Nevertheless, it is also possible to let the program 
generate only one weight for each factor (EAM case). 
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The parameter estimates are obtained by adjusting iteratively the scale 
values to find out those that best fit the observed data by a least squares cri-
terion. The iterative adjustments are handled by the STEPIT function (Chan-
dler, 1969), a general algorithm for multivariate minimization that does not 
require derivatives, using only the function values. 

 
R-Average 
We have implemented the R-Average procedure1, capable of provid-

ing reliable estimates for each trial as well for all the replications of a sub-
ject, both from the full factorial design and from the sub-designs. It could 
take simultaneously into account many replications to achieve a more reli-
able estimation. 

Our first aim is to provide efficient parameter estimations. The weight-
and-value parameters are estimated by minimizing the residual sum of 
squares of the non-linear model. This step is performed with the L-BFGS-B 
algorithm, implemented by Byrd, Lu, Nocedal, and Zhu (1995). We prefer 
this function for its native capability to deal with bounded parameters, as sug-
gested by Zalinski and Anderson (1990). Reliable estimations and theo-
retically valid weights are provided especially when bounds are provided to 
the minimization function. This function provides the fundamental Resid-
ual Sum of Squares index (RSS), from which further goodness-of-fit in-
dexes are computed: Adjusted R-square, Akaike Information Criteria (AIC; 
Akaike 1976), and Bayesian Information Criteria (BIC; Raftery, 1995). 
These last two indexes are computed starting from the logarithm of RSS 
weighted for the number of observations, and by penalizing the models with 
additional parameters. These indexes differ in the penalty function, since 
BIC imposes a larger penalty for complex models than AIC does. The RSS 
index is defined within the range of zero to infinity, where the zero value 
indicates no discrepancy between observed and estimated data. The AIC 
and BIC goodness-of-fit indexes are especially useful in model comparison, 
where the better model has the lower value of the index. A difference of 
ΔBIC > 2 is generally accepted as a positive evidence for a difference be-
tween models. 

Besides, our focal goal is to identify the most suitable model in the 
averaging models family. The choice of the optimal model is made accord-
ing to the so-called “principle of parsimony”. In this approach, given a speci-
                                                      

1 The R-Average procedure is implemented as a computer-library within the R-project 
(R Development Core Team, 2007). The R-Average library is well integrated in the R 
framework and it is specifically designed to easily manage data with several subjects and 
replications. The most time spending functions are optimized by calling external C code. 
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fied number of parameters, an information criterion is given by penalizing 
the models with additional parameters, following a selection criteria based 
on parsimony. Our aim is to identify which are the relevant weight parame-
ters according to the overall goodness-of-fit indexes and the complexity of 
the design. That is, with a Bayesian approach (Burnham & Anderson, 2004), 
the function analyzes both these conditions: testing whether each single 
weight is important for the overall fit of the model and selecting the funda-
mental weights which can differ from the others. In fact, the best model is 
not the linear nor the full non-linear, rather the best is the “simplex” model 
which better explains the data by using the smallest number of different 
weight parameters. 

To select the optimal averaging model, we use a method which repre-
sents a compromise between efficiency and performance. While it is possi-
ble to select the best model only considering the whole family of averaging 
models, we estimate an optimal model with the following algorithms.  

In the first, we start the analysis considering EAM as a baseline. Step-
by-step we change one single weight parameter looking for an improve-
ment. We select this model for the next step whenever the evidence for this 
new model is at least positive. Different criteria can be set. According to 
the selection criterion, if the model with more parameters is better than the 
previous one, it is set as a new baseline. This procedure goes on iteratively 
until any improvement is found. 

The second algorithm follows an alternative procedure. The baseline 
is represented by the complete DAM in which each weight differs from the 
others. Progressively, we reduce the number of different weights, i.e., the 
parameters, equalizing the weights that are not significantly different until 
any improvement is obtained by the procedure. 

At last, we offer a third algorithm, which tests all the subsets of aver-
aging models, considering each combination of DAM. This last procedure 
is very time-consuming and in general does not provide solutions different 
from those of the other two procedures. 

 
 
Monte Carlo simulation for procedures comparison 
 
We used a Monte Carlo simulation technique to investigate the prop-

erties of the averaging model parameter estimations with two numerical 
procedures. The aim of this analysis was to verify the capability of the es-
timated parameters to account accurately for the data, and to compare the 
properties of the two minimization algorithms for the averaging model: that 
implemented in the AVERAGE procedure and that used by R-Average. 
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Figure 1. First simulation run (Errors SD = 1): QQ-Plot of the residuals, i.e., the 
difference between observed and expected data based on the parameters estimated 
by the R-Average and AVERAGE procedure. 
 
 

 
Figure 2. Second simulation run (Errors SD = 1.5): QQ-Plot of the residuals, i.e., 
the difference between observed and expected data based on the parameters esti-
mated by the R-Average and AVERAGE procedure. 
 
 

We follow a method similar to the one proposed by Zalinski (1987). 
That is, we use Monte Carlo techniques to estimate the averaging model pa-
rameters using simulated (i.e., synthetic) data from a standard factorial de-
sign. This simulation shows that accurate estimations of averaging model 
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parameters can be consistently obtained from realistically simulated ex-
periments. Monte Carlo runs are realized by specifying the design size and 
true parameter values, by generating error-free data, by adding random 
normal error to simulate real data, and then by estimating the model pa-
rameters from these data.  

We analyzed a 3 × 3 design in which two independent factors were 
compounded in accordance with the averaging model. For the error-free 
averaging model, the set of averaging model parameters is defined by the 
six values that represent the simulated subjects’ responses, ranging from 
zero to 20, and by the six weights, ranging from one to three. The weight 

0  for the initial state was set to zero. Parameters are reported in Table 1. 
Random errors are obtained by generating two collections of independent 
normal random numbers (SD = 1 and SD = 1.5); each collection is defined 
by replication (n = 100) × parameters of normal random numbers. 

w

Each simulation runs by estimating 100 separate sets of the averaging 
model parameters with both AVERAGE and R-Average. We estimated the 
parameters by fitting the model to the data of each replication using the 
AVERAGE program as indicated by Zalinski and Anderson (1990). Be-
sides, we estimated the set of parameters with R-Average by fitting the 
complete DAM to each set of replications of each collection. The same set 
of bound constraints was used for the two different procedures.  

To obtain a measure of data variability, we calculated the RSS pro-
vided by the set of real parameters. Then, we calculated the RSS and the 
other goodness-of-fit indexes provided by these two sets of parameters.  

Figure 1 shows the normal QQ-plot of residuals for the first simula-
tion run, in which the standard deviation of errors is unity (SD = 1). Analy-
sis of residuals shows that R-Average produces unbiased estimates of the 
expected values for all the examined response conditions. AVERAGE ap-
pears to be more inaccurate in the parameter estimation not only for ex-
treme observations but also for observations outside one standard deviation. 
Figures 2 shows similar findings for the other condition (error SD = 1.5). 

As shown in Table 1, results show that the two functions offer similar 
performances in parameter estimation. However, R-Average estimated more 
reliable parameters with the lowest RSS and with the best goodness-of-fit 
indexes. All the weight and value parameters estimated with R-Average are 
within a range of 1% from the real value. The RSS is always smaller than 
the one provided for the real data, and the BIC indexes provide strong evi-
dences for this procedure, showing the efficacy of the minimization al-
gorithm that better accounts for the data variability. The weights-and-val-
ues and goodness-of-fit indexes get worse by using the STEPIT algorithm. 
Especially the RSS increases up to twice than data variability (RSS +84%). 
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Table 1. Comparison of the estimated parameters and goodness of fit indexes for 
the two collections of data. The parameters of the averaging model estimated by 
AVERAGE and R-Average are compared with the error-free parameters. The RSS, 
BIC, and AIC indexes are indicated: the lower is the value of the index the better is 
the goodness of the estimated set of parameters. The results of the first simulation 
are reported in Table 1A (normal random error = 1 SD) and those of the second 
simulation in Table 1B (error = 1.5 SD). 
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Conclusion 
 
The present study allows to conclude that the new procedure correctly 

estimates the weight and value parameters for the averaging models, as the 
AVERAGE procedure does. The proposed procedure has the capability to 
estimate better model parameters, especially coping with extreme data. We 
found that the previous procedure does not provide robust estimations when 
observations are outside one standard deviation from the model, although 
we have specified the parameter bounds in order to achieve a theoretically 
better estimation. For this reason, we consider the new procedure as a valid 
substitute to AVERAGE. 

The difference in estimation between the two procedures can be alter-
natively explained. The minimization routine used for R-Average can be 
superior to STEPIT, which was at that time identified by Zalinski as the 
best among several minimization routines. A second possibility is that these 
results can be peculiar to this small 3 × 3 design, which estimates 12 pa-
rameters from 15 data points. Using larger designs, more constraints are pro-
vided and the two minimization functions could offer different performance. 

R-Average provides several goodness-of-fit indexes in addition to the 
Chi-Square test; these indexes are especially useful for model comparison. 
Moreover, we have improved the capability to manage replications and to 
deal accurately with incomplete factorial designs. Besides, the proposed 
theoretical method permits the selection and estimation of the optimal 
number of parameters for the DAM. 

An open issues concerns the theoretical validity and the correctness of 
the methodology for group analysis. This special issue was previously con-
sidered by Zalinski and Anderson (1990). Group analysis can cause bias in 
the estimated weights and scale values. Even if this is not a problem with 
the current simulation, since all replications had the same true parameters, 
it constitutes an actual problem with groups of real subjects because within-
subject and between-subject variability can be confounded. 

To better understand the statistical proprieties of the parameters esti-
mated by these and other techniques, more analyses and data generations 
are needed, varying the numbers of factors and levels, the standard error, 
and the starting weight and value parameters. Incomplete responses to the 
full factorial design could also be considered.  
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Abstract 
 

Anderson and Zalinski proposed a procedure of parameter estimation for equal and 
complete differential averaging weight models. This procedure can analyze the da-
ta from one subject and one session at a time, and it is designed to allow for proper 
tests of statistical significance. In the present study we describe an alternative gen-
eral procedure for parameter estimation and for model selection. It allows selecting 
an optimal number of parameters, providing reliable parameter estimation for aver-
aging models. To test the goodness of the estimation, the procedure considers the 
AIC and the BIC validation criteria, which are reliable goodness-of-fit indices and 
can also be used for concurrent model comparison. We have compared the two 
procedures by a Monte Carlo simulation. Results show that these procedures offer 
similar performances in parameter estimation. However, analysis of residuals 
shows that the new procedure produces always unbiased estimates of the expected 
values for all the examined response conditions. This improvement could depend 
on the minimization routine. 

 
 
Riassunto 
 

Anderson e Zalinski hanno proposto una procedura per la stima dei parametri dei 
modelli Averaging con pesi uguali e completamente differenziati. Questa proce-
dura analizza principalmente i dati raccolti da un soggetto e da una sessione per 
volta; è stata sviluppata anche per permettere un’adeguata verifica della significati-
vità delle stime. Nel presente studio viene descritta una procedura alternativa per la 
stima dei parametri e per la selezione del modello. Questa procedura permette di 
selezionare il numero ottimale di parametri, fornendo una stima affidabile dei pa-
rametri per i modelli Averaging. Per verificare la bontà dei parametri stimati, la 
procedura impiega gli indici AIC e BIC come criteri di validità: tali indici di bontà 
di adattamento del modello ai dati possono essere ulteriormente utilizzati per la se-
lezione del modello ottimale. Sono state poste a confronto le due procedure at-
traverso una simulazione con il metodo di Monte Carlo. I risultati mostrano come 
entrambi le procedure offrano risultati equivalenti nella stima dei parametri. Co-
munque, l’analisi dei residui mostra che la nuova procedura produce sempre stime 
corrette dei valori attesi per tutte le condizioni di risposta esaminate. Questo mi-
glioramento potrebbe dipendere dalla routine di minimizzazione. 
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