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The initial state parameters s0 and w0 are intricate issues of the averaging 

cognitive models in Information Integration Theory. Usually they are defined 

as a measure of prior information (Anderson, 1981; 1982) but there are no 

general rules to deal with them. In fact, there is no agreement as to their 

treatment except in specific situations such as linear models where they can 

be merged with the arbitrary zero inter-response scale C0. We present some 

considerations on their meaning and usefulness in the Functional 

Measurement approach, starting from different points of view. Furthermore, 

we suggest a method to deal with their complexity both within each single 

trial of a factorial design, and between the overall trials of an experiment. 

 

Despite their algebraic simplicity initial state parameters of averaging 

models are very complex issues in the domain of Functional Measurement. 

There are no general rules to deal with their effective meaning and 

interpretation, particularly in comparison with others parameters. However, 

this kind of difficulty in measuring or sometimes even understanding the 

meaning of a parameter is typical of most multi-attribute modeling 

traditions like those of Numerical Conjoint analysis or Information 

Integration Theory (Lynch, 1985; Oral & Kettani, 1989). 

Without any claim of being exhaustive, in this paper we attempt to 

analyze initial parameters from several points of view that each deserves 

consideration. With some simple observations we will try to suggest a 

possible solution to deal with their complexity. 

Furthermore, after a brief survey on their meaning in Functional 

Measurement (Anderson, 1965), we will review the problems of their 

analytical and statistical uniqueness and identifiability, and sketch out a 
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relation between their meaning and the Dynamical System Theory from 

which they were borrowed (Anderson, 1959). 

At the end we will try to suggest a method to treat them considering 

all the problems raised in the previous sections; this method, however, 

implies a different interpretation of their meaning. 

ORIGI�AL DEFI�ITIO� 

The first definition of an initial state parameter was proposed in the 

context of an averaging-type model for serial presentations (Anderson, 

1959); the variable, named X0, was a measure of the opinion of a subject 

before the presentation of a communication. 

In the framework of Functional Measurement (Anderson 1965, 1967) 

that previous term was then transformed into an I0 constant defined like an 

initial or neutral impression that was combined, in a weighted average, with 

the scale values of the stimuli of a set of attributes. 

In a later work Anderson (1981) renamed that constant s0 and weighed 

it with an w0 term for similarity with the averaging models formalism. The 

w0s0 term was defined as an internal state variable representing subject's 

initial belief or an attitude concerning the experimental situation (Zalinski, 

1984); more generally a prior memorial information (Zalinski and 

Anderson, 1991). Also, in order to protract the similarities with the other 

subjective measure parameters s in the averaging model, the s0 parameter 

was thought to be the internal representation of a stimulus S0 referring to a 

subject's initial attitude or prior belief. Indeed, Anderson (1981, pp. 63-64) 

claims that: “S0 need not be considered as a unitary entity. Rather, it may be 

some complex field of cognitive elements. The w0 and s0 parameters may 

therefore represent the resultant of some integration operation over some 

internal stimulus field.” 

These parameters represent the “initial state” of the cognitive 

integration process that leads to manifest responses (impressions, judgments 

and so on), a sort of bias that modulates the integration process. Whether or 

not a bias should be considered either an undesirable and unfortunate side-

effect or a natural functioning of past attitudes and beliefs in the integration 

process is an important issue recently raised by Anderson (2009)
1
. 

                                                 
1
 In this paper we will hence use the term bias in a broad way, as a sort of shift on the 

manifest response that influences the attribute evaluations of stimuli, generated by an initial 

state, regardless of its real nature. 
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Starting by these considerations, the averaging integration rule stated 

that: 

 

 

(1) 

 

 

 

whereas i = 1, ... N  is a multi-index taking into account both the overall 

number of levels and attributes included in each set of stimuli. The 

condition i = 0 represents the initial state parameters. 

However, averaging model possesses an intrinsic difficulty: the 

number of parameters that have to be estimated generally differs from the 

number of available equations. Hence, the analytical equation systems are 

generally underestimated or overestimated: for instance, including the initial 

parameters, a 3 × 3 design has fourteen parameters to be estimated whereas 

it gives only nine equations, a 2 × 2 design has four equations for ten 

parameters, a 5 × 5 design has twenty-two parameters against twenty-five 

equation. Obviously, problems of identifiability and uniqueness of the 

solution do not exist whereas an analytical solution can be found. 

Nevertheless, an analytical solution is impossible in most of the cases and 

the problem is solved by searching for least square solutions. 

A�ALYTICAL A�D STATISTICAL SOLUTIO�S 

When is a factorial design analytically solvable?  

If we take a ' × ' × ... × '  factorial design, with n factors, in absence 

of initial conditions and without using the method of sub-designs (Norman, 

1976; Anderson, 1982), simple algebra shows that all the analytically 

solvable designs are solutions of the equation: 

 
 

(2) 

 

 

thus the only natural number solutions that corresponds to concrete 

experimental designs, for an s-w representations, are the trivial case N = 0 

and the two sixteen-equations case of a 4 × 4 design (' = 4, n = 2) and a 2 × 

2 × 2 × 2 design (' = 2,  n = 4). 
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Generalizing equation (2) to factors that possess different number of levels, 

namely a full factorial design of the type '1 × '2 × … × 'n, leads to: 

 

 

 

 

(3) 

 

 

 

where k indexes the set of levels of all the factors. This equation has more 

solutions that correspond to analytically solvable experimental designs than 

the previous case (in addition to the trivial solution 'j = 0 for each j between 

1 and n), and their number depends on the number of factors. For instance a 

'1 × '2 design has three solutions, a '1 × '2 × '3 has fifteen solutions, a '1 

× '2 × '3 × '4 has forty-nine solutions. 

As an example, the '1 × '2 design, in absence of initial condition and 

without sub-designs, shows that analytically solvable designs are those that 

fulfill the following equation: 

 

(4) 

 

namely the 3 × 6, the 4 × 4 and the 6 × 3 design. 

What happens if we add to the problem the two initial state parameters 

required by Anderson? 

Equation (4) becomes: 

 

(5) 

 

and, if the relation (4) had three solutions, equation (5) is satisfied by four 

experimental designs (that are the 3 × 8, the 4 × 5, the 5 × 4 and the 8 × 3).  

On the same line of thought if we allow a variable number of 

parameters p we obtain: 

 

(6) 

 

and now each (overestimated) '1 × '2  design can be solved by adding a 

number p of parameters, as reported in Table 1. 
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Table 1. �umber p of additional parameters needed to analytically 

solve equation (6). 

� 2 3 4 5 6 7 8 9 10 

2 –  –  –  –  –  – – – – 

3 – – – – – 1 2 3 4 

4 –  –  – 2 4 6 8 10 12 

5 – – 2 5 8 11 14 17 20 

6 –  – 4 8 12 16 20 24 28 

7 – 1 6 11 16 21 26 31 36 

8 –  2 8 14 20 26 32 38 44 

9 – 3 10 17 24 31 38 45 52 

10 – 4 12 20 28 36 44 52 60 

 

 

Extending the procedure to more than two factors, as per equation (3), 

results in several analytically solvable systems (namely the equations 

provided by different full factorial designs) once added an adequate number 

of parameters p. Nevertheless, there will be some factorial designs that will 

remain analytically unsolvable. 

Therefore, if we apply the method of sub-designs to a ' × ' × … × ' 

full factorial design, providing the system with other equations, the 

analytically solvable factorial designs will be all the solutions of the 

following equations system, by means of an adequate number p of 

parameters: 

 

 

(7) 

 

 

 

Hence, a classical 3 × 3 factorial design could be analytically solved 

by adding three parameters (for instance C0 and the initial state parameters 

s0, w0 as in Anderson, 1981), and yet a 3 × 3 × 3 designs (with sub-designs) 

needs forty-five additional parameters to be analytically solvable. This huge 

disparity is a weakness of factorial designs. Indeed, Anderson (1982) and 

Zalinski (1987) suggest that, in spite of a unique analytical solution, a 

statistical one should be searched for, that is, uniqueness and identifiability 

of solutions can be obtained by means of statistical methods. The method of 

sub-designs provides an additional number of equations that underlie 

statistical analysis. In other words, a least square solution is searched for the 

overall system of analytical equations. 
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In the previous section we have briefly reviewed the problem of 

parameters identifiability and uniqueness for averaging models, highlighting 

the fact that there are several systems (although not as many as would be 

desirable) that could be analytically solved. The number of these uniquely 

solvable systems could be raised by simply allowing a number of initial 

state parameters different from the two suggested in the Information 

Integration Theory framework (Anderson, 1981), but there is the need for a 

logical and meaningful way in which this may be achieved. 

Furthermore, for such systems an analytical-statistical hybrid 

methodology could be useful: indeed, using different subsets of the 

equations provided by the method of sub-designs, and setting an adequate p 

number of additional parameters (which should not necessarily be 

interpreted as initial state parameters), different analytical solutions to the 

problem may be found. Statistical methods could then be layered over the 

analytical results of all the possible equations systems obtainable from the 

experimental data. Otherwise, parameters obtained by solving one (or more) 

of these systems could be used as starting values for an iterative algorithm 

like AVERAGE (Zalinski, 1987; Zalinski and Anderson, 1991) or R-

Average (Vidotto and Vicentini, 2007). 

To build such a p-variable system we need to investigate more in 

detail the initial conditions. 

DY�AMIC A�D STATIC APPROACH 

Whereas the parameter s can be easily identified with the subjective 

measure of some attribute and w can be related with its importance, a 

similar interpretation for s0 and w0 is far from simple: for instance, should 

they be interpreted as a dynamic or a static bias? 

This point deserves careful considerations: initial state parameters are 

generally important features of Dynamical System Theory and, if we 

conceive the acts of perception and integration as dynamical phenomena, 

then we should deal with initial state parameters as if they were starting 

points in the evolution of the system. Indeed, they have been inspired by a 

parallelism with an iterative discrete serial presentation (Anderson, 1959) in 

which X0 was the first term of the series. 

However, although in the averaging model a dynamical structure is 

introduced by showing to the subjects a sequence of designs and sub-

designs, there is not a truly iterative formulation and initial state parameters 

are more of a common feature of all the sub-designs, rather than an effective 

starting point. In other words, they can be considered a sort of starting point 
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only for each single presentation and when the assumption of independence 

of the responses holds. 

In such a perspective, what effectively constitutes the prior 

information? Moreover, how does the system behave and evolve over time 

if w0 and s0 are the same in every experimental condition? Does the analogy 

to the initial state constant of Dynamical Systems still hold? 

Considering the system from a dynamical perspective is a fascinating 

approach, but the structure of an averaging model and of the presentation 

sequence of a factorial design is not the structure of a real iterative system; 

it is instead a static one. Namely, there's a static evaluation of attributes that 

lead to a decomposition of the judgment into subjective parameters inside 

each cell of the design. 

Hence, we question whether the initial state parameters could be 

considered local constants that regard each single cell of the design, instead 

of global constants relative to the entire experiment. Certainly, we are aware 

that there exist features which equally affect all the sub-designs and the full 

factorial design: for instance, in a classical integration task in which 

responders evaluate the sexual attractiveness of fictional persons varying in 

beauty and personality, sexual orientation affects both the full-factorial and 

all the sub-designs in a rather similar way, as it seems hardly conceivable 

that one's sexual orientation is dependent on the stimuli of a certain sub-

design. 

Nevertheless, probably these two perspectives are not mutually 

exclusive: testing the equality of different parameters could be a further way 

to assess the effective existence of a unique bias. In the same way, since the 

hypothesis of allowing initial state parameters to record bias toward a 

specific factor or collected information of previous trials violates the 

experimental assumption that responses are independent, we could directly 

use the experimental results to test if the independence assumption itself 

holds. 

On the other hand, if we allow each sub-design to have its own initial 

state parameters, we incur a complex model with too many parameters. We 

need a sort of “principle of parsimony” to set up the appropriate number of 

initial conditions. At the same time, we wonder whether there really exists 

an ideal number of initial state parameters for every experiment? 
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O�E WAY SUB-DESIG�S 

Do we really need initial conditions for one way sub-designs? Theory states 

that the bias should be averaged even in one-way design (Anderson, 1981). 

Nevertheless, should a bias be averaged within a one-way design? We could 

consider a bias, over a single dimension, as a linear or additive effect. So, 

we could model one-way designs as: 

 

(8) 

 

where s is the subjective evaluation of the attribute, b is the subject's bias 

and ε is the normal error term. 

If we are analyzing group data the bias should be normally distributed, 

like the normal error, hence the mean of R should be the same as the mean 

of s, similarly as it is for an additive model (Anderson, 1981). On the other 

hand, if we are analyzing a single subject’s data, we probably do not need to 

identify the bias. This is because, if it does in fact exist, the bias is intrinsic 

in the subject’s behavior, and it will affect both the successive sub-designs 

and the full factorial design.  Hence the mean of R could be interpreted 

again as equal to the mean of s. 

Thus, in both cases we could neglect the initial state parameters as a 

bias measure; since, in group data, they should theoretically vanish, whereas 

in single subject data they are necessary to the analysis: if we want the final 

parameters s and w to be a measure of the subjective values of the attributes, 

we need to consider the bias as a part of the parameters themselves. 

Otherwise, interpretation of n-th way design would be influenced by the 

absence of bias. 

Finally, if one way sub-designs could be considered linear models 

they can be used to reduce the total number of  necessary parameters: s-

parameters can be  identified by the one way sub-designs.  

Eventually, in the case of a non-linear assumed model for the one way 

sub-designs, s-parameters could be still identified by neglecting initial 

parameters for one way sub-design, and the result could be used as a 

baseline for iterative algorithmic analysis such as those carried out by 

AVERAGE or R-Average. 

�-TH WAY DESIG�S 

An opposite conclusion can be reached for n-th way designs: here the 

initial state parameters seems to be necessary. In single subject data 

analysis, since the s-parameters are supposed to be biased and measured by 

ε++= bsR
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the one-way designs, the s0 and w0 parameters in the n-th way designs (see 

equation 9 for an example of a two-way design) become a measure of the 

bias of that single design of the experiment. Then, if they are the same in all 

N-th way designs, we have the case of a prior information term that equally 

affects all designs. Otherwise, our experimental design likely violates the 

fundamental assumption of independence. 

 

 

(9) 

 

 

The same happens for group data: since s-parameters now are 

supposed to be unbiased and measured by the one-way designs, the s0 and 

w0 parameters could became a measure of an objective bias of that single 

design of the experiment. 

A POSSIBLE APPROACH 

What we mentioned before implies an additional initial state 

parameters for every cell of every design (except for the one-way sub-

designs). This is not a parsimonious model. However, we can further reduce 

the number of these additional parameters by means of at least two different 

criteria: 

1- Experimental hypotheses 

2- Statistical analyses 

EXPERIME�TAL HYPOTHESES 

Let us try to shape the relation between experimental hypotheses and 

additional parameters assuming for instance a 3 x 3 x 3 full factorial design. 

If we are interested in verifying the presence of a possible bias due to a 

certain combination of factors, independently from the levels of these 

factors, we could for instance build a model of this kind: 

 

1- One-way designs without bias 

2- Each two-way sub-design with its own bias 

3- The full factorial design with its own bias 

 

then we will have to deal with 18 s and w parameters having a total of 27 + 

27 + 9 = 63 equations; the number of chosen biases is 2 + 2 × 3 = 8. If we 
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add a C0 parameters we have exactly 27 parameters that have to be 

estimated. We can then choose between 1) an analytical solution by means 

of the equations provided by only the full factorial design, 2) a statistical 

solution provided by the method of sub-designs, or 3) a hybrid methodology 

in which the results of analytical equations system can be used as a baseline 

for iterative algorithmic procedures. 

Another example could be the following one: let us consider a 3 x 3 

experimental design. If we are interested in verifying the relation between 

possible biases induced by the levels of factor A, in the presence of factor B 

but independently from its levels, we could build this model: 

 

1- One way designs without bias 

2- In the full factorial design bias should be introduced like in table 2. 

 

Table 2. Structure of the bias parameters. 

 B1 B2 B3 

A1 Same bias w0,1 and s0,1 

A2 Same bias w0,2 and s0,2 

A3 Same bias w0,3 and s0,3 

 

On the contrary, if we were interested in verifying the relation 

between the biases induced by the levels of the factor B, in presence of 

factor A, we could build the opposite model. Comparison of these models, 

by means of fit indexes like BIC (Schwarz, 1978; Raftery, 1995) or AIC 

(Akaike, 1974;1976), could be useful to understand eventual difference in 

bias induced by the two factors. 

 

Hence, the number of parameters in the previous examples was 

completely defined by the experimental hypotheses. Analytical, statistical or 

hybrid analysis could be used, depending on the nature of the model, to 

estimate the parameters. Nevertheless, statistical analyses could also be used 

to reinforce the decision of removing some s0 and w0 parameters from the 

model. 

STATISTICAL A�ALYSIS 

If we assume the hypothesis where the mean of one-way R is equal to 

the mean of s, as previously stated, we could use regression analysis to 

estimate the relation between w-parameters and the existence of an s0 and w0 
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in a n-th way sub-design. Taking for instance a two-way sub-design we can 

hypothesize the following relation (that holds in each cell of the design): 

 

(10) 

 

whereas the hypothesized linear dependence between R and s leads to: 

 

 

 
 

 

    (11) 

 

 

 

 

 

Linear regression could then be used to infer the importance of the w 

and w0s0 parameters of the model. If a beta regression coefficient is 

statistically null (or lower than a fixed threshold value) the correspondent 

parameter would be negligible in the final analysis. Furthermore, ratios 

between the regression coefficients are a measure of the ratios between w-

parameters. Hence, once a scale unity is decided upon, all the w and w0s0 

parameters could be calculated (using for instance a multivariate linear 

regression or, better, a path analysis). If all the resulting betas are 

statistically coherent in their proportion from cell to cell there will be no 

need for analytical or iterative solutions. Otherwise, they could be used as 

baseline for iterative algorithms as we mentioned before. 

A final notice regards the use of equation (10) with a non linear 

dependence hypothesized for R and s: in this case the procedure still holds, 

but beta regression coefficients have a different meaning depending on the 

functional form that relate R to s. Nevertheless, they could still be useful for 

determining whether some w0s0 parameters can be ignored, reducing in such 

a way the number of parameters that have to be estimated. 
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GE�ERAL DISCUSSIO� 

All the previous considerations suggest a possible way to handle the 

initial state parameters s0 and w0 in a sort of “dynamical” framework; 

although not in the proper sense of the Dynamical System Theory, but from 

a flexible perspective in which there is no predetermined number of such 

parameters. 

The global number of s0 and w0 parameters could depend upon the 

experimental hypotheses we would like to test and the importance of each 

parameter in the global model. This latter result could be obtained through 

statistical analyses on the collected data: linear regression (or path analysis), 

in fact, under suitable hypotheses, could be used to evaluate the importance 

of w0 parameters and to calculate the ratios between w-parameters (and their 

values) both for single subject and group data analysis. However, in such a 

model, the meaning of initial state parameters is slightly different from the 

original interpretation described by Anderson. In the perspective of the 

present work, these parameters may be a measure of the bias, if it exists, in 

each cell of a design and not a sort of starting point for the system evolution. 

Moreover, in such a framework, a model may often be analytically 

solvable by means of an adequate number of parameters. If they could be 

subdivided among the sub-design in a well-advised way that fits the 

experimental hypotheses, analytical solutions can be found. Otherwise 

previous results can always be used as a baseline for iterative methods. 

Finally, it is worthy of notice that this interpretation of the initial state 

parameters needs much more theoretical considerations and empirical data: 

indeed, this interpretation could not hold for all integration tasks. This 

interpretation, also, does not substitute the “prior information” approach. It 

is instead meant to be largely complementary as a means to analyze 

experimental data from different perspectives. 
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