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This is an intuitive physics study of collision events. In two experiments the 
participants were presented with a simulated 3D scene showing one sphere 
moving horizontally towards another stationary sphere. The moving sphere 
stopped just before colliding with the stationary one. Participants were asked 
to rate the positions which both spheres would have reached after a fixed 
time if the collision had really occurred. The simulated masses of both 
spheres and the velocity of the moving one were manipulated. Specifically, 
in Experiment 1 different implied masses were defined by varying only the 
size of the spheres; in Experiment 2, different implied masses were defined 
by varying both the size and the apparent texture (material) of the spheres. 
Functional Measurement was used to compare the physical laws of collision 
events with cognitive integration rules. Cognitive rules proved to be more 
similar to physical laws in Experiment 2, i.e., when both spheres size and 
apparent texture were manipulated. Surprisingly, in both experiments only 
half the participants took into account the possibility that the moving sphere 
could have bounced back after the collision. These and other results are 
important for teaching elementary physics. 

 
INTRODUCTION 

 
Intuitive physics typically depends on multiple stimulus cues: that 

the magnitude of one variable may depend on that of another variable is 
ingrained in everyday thought and action. Functional thinking seems to be a 
general mode of cognition (Karpp & Anderson, 1997, p. 360). Stimulus 
integration often obeys simple algebraic rules, such as addition, 
multiplication or averaging (Anderson, 1981). The basis of intuitive 
knowledge is thus Cognitive Algebra. Information Integration Theory (IIT) 
and Functional Measurement (FM) (Anderson, 1981, 1982) offer suitable 
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theoretical and methodological frameworks for assessment of these 
cognitive algebraic rules (see Hofmans, Mairesse, & Theuns, 2007). 

Several physical laws (e.g., Newton’s laws of motion) are 
formalized as simple algebraic rules: IIT and FM are powerful tools for 
directly comparing cognitive and physical rules, thus unifying intuitive and 
symbolic knowledge.  

One of the major determinants of the congruency between intuitive 
and formal knowledge appears to be familiarity with the task. Although 
people may fail in solving abstract problems, they may still be able to make 
accurate predictions of physical events in familiar specifications of such 
problems (Kaiser, Jonides, & Alexander, 1986; Masin & Rispoli, 2010). 
Another major determinant of this congruency is the realism of stimuli: 
when people make predictions concerning dynamic events, the use of 
dynamic animations as stimuli improves their performance (Kaiser, Proffitt, 
Whelean, & Hecht, 1992).   
 In this study, I investigate the intuitive physics of collision effects 
between simulated 3D spheres differing in size, apparent weight, and 
material. As the stimuli in my experiments are more familiar and realistic 
than those used in previous experiments on the intuitive physics of 
collisions, participants’ performance is expected to be closer to formal 
physics than in previous experiments.   
 
 Physics of collisions. Let us presume that a sphere (A) is moving 
horizontally towards another sphere (B) which is stationary, and that their 
centers of mass lie on a horizontal line1. If this system is isolated (i.e., not 
subject to external forces), if the spin of the two spheres is ignored, and if 
the collision is perfectly elastic, then:   
  

v’A =  vA  (mA – mB) / (mA + mB)                    (1) 
v’B = 2 vA  mA / (mA + mB)                           (2) 

 
where v’A and v’B  are the post-collision velocities of A and B, vA is the pre-
collision velocity of A (vB = 0 because B is stationary before the collision), 
and mA and mB are the masses of A and B. Equations (1) and (2) are derived 
from Newton’s Third Law of motion (Kittel, Knight, & Ruderman, 1973). 
Note that according to Equation (1), if mA < mB, then v’A is negative, which 
means that A bounces back.   
 
                                                
1 This pattern of stimuli is similar to those used by Michotte (1945/1963) in his classical 
experiments on the ‘launching effect.’  
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 From 2D to 3D stimuli. An early study on the intuitive physics of 
collisions with stationary 2D stimuli was conducted by Legrenzi & Sonino 
(1984), who found serious misconceptions about the proposed physical 
situation. De Sá Teixeira, De Oliveira, & Viegas (2008) recently conducted 
a study using Functional Measurement and moving 2D stimuli. They 
showed that participants additively integrate the area and the velocity of a 
moving square to predict the distance travelled by a stationary square hit by 
the moving square, instead of the physically correct multiplicative rule2. 
White (2006, 2009) showed that most observers are prone to ignoring the 
effect that a stationary object exerts on the post-collision behavior of a 
moving object colliding with it: this is the causal asymmetry hypothesis. A 
common feature of the experiments discussed above is the abstractness of 
the stimuli presented to participants: 2D objects varying only in velocity 
and area. 

The primary aim of my research was to determine whether these 
misconceptions are due to the abstractness of the stimuli employed. In 
ordinary life, we are immersed in a 3D environment where collisions 
usually take place between 3D moving objects differing in size, specific 
weight, and velocity. The 2D figures used as stimuli in the above 
experiments are highly simplified representations of people’s everyday 
experience. Considering that familiarity with the task is one of the major 
determinants of the congruency between intuitive and formal physics 
(Kaiser et al., 1986; Masin & Rispoli, 2010), it is not surprising to find 
incongruity in experiments carried out with unfamiliar stimuli. Do these 
misconceptions still occur when people are presented with more naturalistic 
simulations of collisions? In my experiments, by means of computer 
graphics, I created a 3D scenario with moving spheres of different size, 
texture, and velocity. My prediction was that, in such situations, 
participants’ intuitive knowledge would be more congruent with formal 
physics than found in previous experiments. However, I did not predict that 
participants’ performance would be perfectly isomorphic to physics: I 
intended to use FM and IIT as means to assess the degree of similarity 
between Equations (1) and (2) and cognitive algebraic integration rules. 

 
   

 

                                                
2 The comparison between the additive integration rule of area and velocity and the 
physically correct multiplicative rule of mass and velocity makes sense only under the 
assumption that manipulations in area are conceived of as manipulations of implied mass: 
this assumption was made by De Sá Teixeira et al. (2008), and is common in intuitive 
physics experiments. 
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EXPERIMENT 1 
 
 Participants. The participants were 7 male and 13 female paid 
students of Psychology, aged between 20 and 26. They all had normal or 
corrected-to-normal visual abilities. 
 
 Stimuli and Apparatus. The stimuli were presented on a personal 
computer equipped with a 37.5 cm × 30 cm screen, a mouse, and a 
keyboard. Figure 1 shows the scenario as it appeared to participants. 
 
 

 
 
Figure 1: Drawing of one of the stimuli of Experiment 1.  
 
 
Participants sat at a distance of about 50 cm from the screen, the 
background of which was white. A (35.5 cm × 22 cm) 3D animation was 
displayed in the upper part of the screen, leaving an 8-cm white space under 
the animation itself. This white space contained a horizontal graduated scale 
(response scale), composed of 30 red rectangular steps, separated by white 
edges. Numbers from 1 to 30 (from left to right) appeared below the steps 
of the response scale. 

Animation. The animation was created by 3D Studio Max. It 
represented two 3D spheres on a 3D gray horizontal rectangular table. The 
background of the animation was black. The spheres were simulated as 
slightly raised above the table, so that they did not appear to touch its 
surface. Participants had the impression of being in front of a table and 
viewing it in perspective. A horizontal graduated scale (table scale) 
composed of 30 red rectangular steps appeared in the middle of the table. 
Numbers from 1 to 30 (from left to right) appeared below the steps of the 
table scale. The table scale appeared to be so similar to the response scale 
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that the correspondence between them was obvious. The response scale was 
intended to be a 2D representation of the table scale. The instructions given 
to participants also emphasized this correspondence.  

At the beginning of the animation and during the subsequent 
horizontal motion, the two spheres were simulated as located above the 
table scale without touching the table itself. The spheres had a photographic 
texture of a material like iron, and their reflectance was regulated according 
to the pattern of reflectance typical of metals. All participants were asked if 
they clearly recognized two iron spheres and said they did. At the beginning 
of the animation, one sphere (A) appeared close to the left side of the table 
and the other sphere (B) in a central position. Then, 360 milliseconds after 
the appearance of the animation, A began to move horizontally from left to 
right towards B, and stopped about 2 mm (measured on the screen) from it. 
A moved at 8.9, 14.4, or 38.3 cm/s. At the end of the motion, A was located 
between steps 15 and 16 on the table scale, and B between steps 17 and 18, 
depending on the size of the two spheres. A visual warning signal appeared 
500 milliseconds after A had stopped moving. This signal was 2D a yellow 
rectangular bar (23.5 cm × 0.7 cm measured on the screen) which appeared 
in the middle of the black background of the animation for 2 seconds. 

The simulated material (iron) of the two spheres was kept constant, 
so that variations in their implied mass (IM) were only obtained by 
manipulating their size. Their apparent volumes3 were 4.2, 8.2, or 17.2 cm3. 
The velocity of A was uniform throughout the motion. i.e., the motion of A 
did not appear uniform, but slightly decelerated (Runeson, 1974). The two 
spheres moved without spin.  
 
 Procedure and Experimental Design. Participants were told that 
they would be presented with a video showing an iron sphere moving 
horizontally towards another iron sphere which was stationary, and that the 
video originally showed a collision between the two, but the video had been 
cut just before the collision took place. They were asked to pay attention to 
the yellow bar which appeared in the middle of the dark background after 
the moving sphere had stopped. Lastly, they should remember that the scale 
represented on the table (the table scale) corresponded exactly with that 
below the video (the response scale). Two stimuli were randomly chosen 
and presented, in order to familiarize participants with them. 

Participants were then told that their task was to imagine that the 
collision between the spheres had really occurred, and to predict the 
positions they would have reached on the table scale (as if the video had not 

                                                
3 The volume of each sphere was calculated by measuring its diameter on the screen.   
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been cut) when the yellow bar appeared. They could watch the sequence as 
many times as they wanted by pressing SPACE on the keyboard. When they 
felt ready to answer, they could press ENTER, after which the cursor of the 
mouse appeared on the response scale below the animation. Participants had 
to rate the position (on the response scale) of B with a first click of the 
mouse, and the position of A with a second click. Four randomly chosen 
stimuli were then presented as examples.  

After these practice trials, all participants stated that they understood 
the task. The experiment followed a 3 (IMA) × 3 (IMB) × 3 (vA) factorial 
design. The stimuli were presented in random order twice. 

 
 

RESULTS 
 

The rated positions of A (second click of the mouse) and B (first click) were 
analysed separately. 
 
 Position of A. As a paired sample t-test showed that the effect of 
replication was not statistically significant (t(539) = 0.897, p = 0.37), the 
two responses were averaged across replications. 

An important preliminary consideration is that, according to 
Equation (1), A can move after the collision in the same direction as its 
motion before the collision or, if mA < mB, it should bounce back. 
Surprisingly, eight participants did not take this possibility into account, 
never placing A any step backwards from step 15 of the response scale (i.e., 
the position of A when it stops moving). 

The top left panel of Figure 2 shows the mean rated position of A, 
averaged over its three velocities, as a function of the implied mass of A 
(horizontal axis) for each implied mass of B (different lines).  The pattern of 
lines seems to be somewhat indefinite, since they initially converge and 
then diverge. Although the position of A is proportional to the difference 
between IMA and IMB, no integration rule can be deduced from this pattern 
of data.  

The left panel of Figure 3 shows the mean rated position of A as a 
function of the implied masses of A and B (horizontal axis) for each velocity 
of A (different lines). A family of diverging curves fits the data, supporting 
a multiplicative rule for the integration of the combined effect of the 
implied masses and vA.  Since the implied masses of the two spheres were 
integrated according to an indefinite rule (top left panel of Figure 2), the left 
hand panel of Figure 3 supports this overall integration rule: 
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 Position A = vA × f (IMA,IMB)                                               (3) 
 
where f is an unknown. Equation (3) may be called the multiplicative-
indefinite integration rule.  

An analysis of variance was performed to test Equation (3). Two 
main effects of two factors were significant: IMA (F(2,38) = 14.36, p = 2.27 
× 10-5), and IMB (F(2,38) = 19.76, p = 1.31 × 10-6). vA was not significant 
(F(2,38) = 2.4, p = 0.1). The IMB × vA interaction was significant (F(4,76) = 
3.54, p = 0.01), the linear-by-linear trend component of the interaction 
being the only significant one (F(1,76) = 13.56, p = 0.0004). The IMA × vA 
interaction was marginally significant (F(4,76) = 2.43, p = 0.055), the 
linear-by-linear trend component of the interaction being the only 
significant one (F(1,76) = 8.96, p = 0.004). No other interaction effects 
were significant. This pattern of statistical results supports Equation (3) (see 
Anderson, 1982, p. 117). 

Individual data were plotted in the same manner as group data, and 
visual inspection of the graphs indicated that only three participants 
integrated the variables in accordance with Equation (3). Among the 
remaining participants, six used an IM-only integration rule, ignoring vA, 
four used a vA-only integration rule, ignoring the implied masses of the two 
spheres, four always placed A on the same step of the scale, and three 
seemed to respond at random. 

 
 Position of B. As a paired sample t-test showed that the effect of 
replication was not statistically significant, (t(539) = -0.516, p = 0.57), the 
two responses were averaged across replications. 

The top right panel of Figure 2 shows the mean rated position of B, 
averaged over the three velocities of A, as a function of the implied mass of 
A (horizontal axis) for each implied mass of B (different lines). The lines 
converge upwards-right. The unequal weights averaging model may 
account for this pattern of deviation from parallelism (Anderson, 1981, p. 
67). Although it was impossible to compute the relative weights associated 
with each level of the variables4, the subjective weight associated with 
variable A increases as the implied mass of A increases.    

The right hand panel of Figure 3 shows the mean rated position of B 
as a function of the implied masses of A and B (horizontal axis) for each 
velocity of A (different lines). A family of diverging curves fit the data, 
                                                
4 All sub-designs are needed in order to estimate the weights attached to each level of each 
variable (Zalinski & Anderson, 1991). However, the stimuli that would correspond to all 
sub-designs were meaningless in the context of Experiment 1, so that estimation of the 
weights was impossible.   
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supporting a multiplicative integration rule between the implied masses of 
the spheres and the velocity of A.  Since the implied masses of the two 
spheres were integrated according to an averaging rule (top right panel of 
Figure 2), the right panel of Figure 3 supports this overall multiplicative-
averaging integration rule:  
 

Position B = vA × (w0IM0 + wAiIMAi + wBjIMBj) / (w0 + wAi + wBj)   (4) 
 
where IMAi is the implied mass of level i of A, IMBj is the implied mass of 
level j of B, wAi is the subjective weight associated with IMAi,  wBj is the 
subjective weight associated with IMBj, and  w0 and IM0 are default values. 
 

An analysis of variance was performed to test Equation (4). All the 
main effects of all factors were statistically significant: IMA (F(2,38) = 34.7, 
p = 2.67 × 10-9 ), IMB (F(2,38) = 57.58, p = 3.15 × 10-12), and vA (F(2,38) = 
75.38, p = 5.94 × 10-14). All two-factor interactions were significant: IMA × 
IMB (F(4,76) = 7.19, p = 5.71 × 10-5), IMA × vA (F(4,76) = 5.69, p = 0.0005), 
and IMB × vA (F(4,76) = 8.53, p = 9.75 × 10-6). The three-factor interaction 
IMA × IMB × vA was also significant (F(8,152) = 4.59, p = 4.96 × 10-5). This 
pattern of statistical results supports Equation (4) (see Anderson, 1982, p. 
117). 

Individual data were plotted in the same manner as group data, and 
visual inspection of the graphs indicated that only seven participants 
consistently integrated the variables according to Equation (4). Of the 
remaining participants, six used an IM-only integration rule, ignoring vA, 
four used a vA-only integration rule, ignoring the implied masses of the two 
spheres, and three seemed to respond at random.  
 
         

          



Intuitive physics of collision effects 
 

459 

 
 
Figure 2: Top panels: Mean rated positions of A (top left) and B (top 
right) in Experiment 1, averaged over 3 velocities of A, as a function of 
size of A for each size of B. Bottom panels: Simulations of Equation (1) 
(bottom left) and Equation (2) (bottom right) as a function of mA 
(horizontal axis) for each mB (different lines) with vA=1.  
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Figure 3. Mean rated positions of A (left) and B (right) in Experiment 1 
as a function of sizes of A and B for each velocity of A. Since mean 
rated positions of A and B were both proportional to difference 
between Size A and Size B, ordered pairs (Size A , Size B) are plotted on 
abscissa in ascending order of difference between sizes.  
 

 
 

DISCUSSION 
 

Participants were asked to rate the positions that both spheres would 
reach after a fixed time interval (500 ms) from the imagined collision (i.e., 
when the yellow bar appeared). This procedure is the easiest way of 
estimating the imagined post-collision velocities of the spheres. It was 
reasonably assumed that the rated positions were linear functions of 
imagined velocities: this would support the linearity of the response and 
facilitates comparisons between Equations (1) and (2) and cognitive 
integration rules. This assumption rests on the hypothesis that the fixed time 
interval from the imagined collision and the appearance of the yellow bar 
was always perceived as being the same during the course of the 
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experiment. There is no clear reason to believe that this hypothesis is not 
true.5   
 The bottom left and right panels of Figure 2 show simulations of 
Equations (1) and (2), respectively as functions of mA (horizontal axis) for 
each mB (different lines) with vA = 1, as if the two spheres were real material 
spheres with density 8 g/cm3 (mean physical density of iron), with volumes 
of 4.2, 8.2, and 17.2 cm3. Note that the two bottom panels are very similar 
to each other, both having a slightly slanted barrel pattern. This suggests 
that Equations (1) and (2) are substantially similar. The only notable 
difference between them is that Equation (1) accounts for negative values: if 
mA < mB, then the post-collision velocity of A is negative, i.e., A bounces 
back. When vA = 1, Equations (1) and (2) may both be considered as 
instances of the general ratio integration rule (Anderson, 1981, p. 77).  

Figure 2 allows us to compare the cognitive integration rules for the 
implied masses of A and B (top left and top right panels, respectively) with 
the physically correct ratio integration rules as formalized by Equations (1) 
and (2) (bottom left and bottom right panels respectively).  

The most striking differences appear between the cognitive and the 
physical integration rules for A. While Equation (1) predicts a slight 
upwards-right convergence of the lines according to a slanted barrel pattern 
(bottom left panel of Figure 2), the lines of the functional graph in the top 
left panel initially tend to converge and then to diverge. In addition to the 
notable differences concerning the integration rule, eight participants never 
considered the possibility that A could bounce back after the collision.   

Some differences also appear between the cognitive and physical 
integration rules for B. Equation (2) predicts a slight upwards-right 
convergence of the lines according to a slanted barrel pattern (bottom right 
panel of Figure 2). This also appears in the top right panel, but the slanted 
barrel does not appear.    

In sum, it seems that the greatest misconceptions about collision 
effects concern the post-collision behavior of A. Research on the perception 
of collision effects supports this tenet: O’Sullivan (2005) and Reitsma & 
O’Sullivan (2009) presented 3D collisions between simulated spheres to 
their participants, and reported that they are less sensitive to post-collision 
anomalies of the initially moving sphere with respect to those of the initially 

                                                
5 This does not mean that the imagined post-collision velocity is a linear function of the 
theoretically correct physical velocity. If we presume that that the participants imagined the 
spheres were subject to friction, the imagined velocity would be a non-linear negatively 
accelerated function of physical velocity. This is not essential for a discussion of the 
results.   
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stationary sphere. White (2009) reported that perceived forces in collisions 
are asymmetrical: we perceive the force exerted by the moving object on the 
stationary one, but not vice versa.  

Despite these misconceptions, the intuitive physics of collisions as 
shown by the participants in Experiment 1 is definitely more consistent with 
normative physics than that of the participants in previous experiments. 
Both cognitive integration rules concerning the predicted positions of A and 
B (as expressed by Equations (3) and (4)) show a multiplicative integration 
rule between the combined effect of the implied masses and vA, whereas De 
Sá Teixeira et al. (2008) found that area and velocity were combined 
additively (see Note 2). Thus, 3D (realistic) stimuli rather than 2D (abstract) 
ones improved participants’ overall performances. 

One explanation for the discrepancies found in Experiment 1 
between cognitive and physical integration rules is the relatively small 
range of variation of the implied masses of the two spheres. In Experiment 
1, the variations of the implied masses were only obtained by varying the 
sizes of the two spheres. To test this hypothesis, a second experiment used 
spheres differing in both size and simulated material (texture).  

 
 

EXPERIMENT 2 
 
 Participants. Participants were 5 male and 15 female paid students 
of Psychology, aged between 20 and 26. They all had normal or corrected-
to-normal visual abilities. None had participated in Experiment 1. 
 
 Stimuli and Apparatus. The stimuli and apparatus were the same 
as in Experiment 1, except that manipulation of the implied masses of the 
two spheres was carried out by varying both size and simulated material 
(texture) according to a 2 (Texture)  × 2 (Size) factorial design. Two 
possible photographic textures were attached to each sphere, one depicting 
iron (the same as in Experiment 1) and the other depicting polystyrene. In 
both cases, the reflectance of the spheres was manipulated to increase the 
realism of the photographic texture. When asked, all participants clearly 
identified the simulated material of the spheres.   

The apparent volumes of the spheres were either 4.2 or 17.2 cm3. 
The pre-collision velocity of A was either 12.2 or 25.9 cm/s. In sum, there 
were four different implied masses of the spheres and two different pre-
collision velocities of A. 
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 Procedure and Experimental Design. The procedure was the same 
as in Experiment 1, except that participants were told that the spheres in the 
video could be made of either iron or polystyrene.  

The experiment obeyed a 4 (IMA) × 4 (IMB) × 2 (vA) factorial design. 
The stimuli were presented in random order twice. 
 
 

 RESULTS 
 
The rated positions of A (second click of the mouse) and B (first click) were 
analysed separately. 
 
 Position of A. As a paired sample t-test showed that the effect of 
replication was not statistically significant (t(639) = 0.4, p = 0.69), the two 
responses were averaged across replications. 
 As in Experiment 1, an important preliminary consideration was the 
number of participants – ten – who did not consider the possibility of A 
bouncing back. 
 The top left panel of Figure 4 shows the mean rated position of A, 
averaged over the three velocities of A, as a function of the implied mass of 
A (horizontal axis) for each implied mass of B (different lines). The slanted 
barrel pattern supports a ratio integration rule for the implied masses of the 
two spheres (see Anderson, 1981, p. 77).   
 The top panel of Figure 5 shows the mean rated position of A as a 
function of the implied masses of A and B (horizontal axis) for each velocity 
of A (different lines). Two diverging curves fit the data, supporting a 
multiplicative integration rule between implied masses and the velocity of 
A. 

Since the implied masses of the two spheres were integrated 
according to a ratio rule (top left panel of Figure 4), the left hand panel of 
Figure 5 supports this overall multiplicative-ratio integration rule:  

 
Position A = vA × IMA / (IMA + IMB)                                     (5) 
 
An analysis of variance was performed to test Equation (5). All the 

main effects of all factors were statistically significant: IMA (F(3,57) = 24.0, 
p = 3.58 × 10-10), IMB (F(3,57) = 26.8, p = 6.06 × 10-11), and vA (F(1,19) = 
16.14, p = 7.35 × 10-4). All two-factor interactions were significant: IMA × 
IMB (F(9,171) = 4.02, p = 1.08 × 10-4), IMA × vA (F(3,57) = 3.32, p = 0.026), 
and IMB × vA (F(3,57) = 10.43, p = 1.44 × 10-5). The three-factor interaction 
IMA × IMB × vA (F(9,171) = 0.91, p = 0.52) was not significant. According 
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to Anderson (1982, p. 117) the three-factor interaction is indispensable for 
statistical validation of Equation (5). This incongruence for the 
multiplicative-ratio model was probably due to the use of a wide range of 
variation of implied masses and a relatively narrow range of variations of 
velocity of A. Despite this statistical flaw, Equation (5) seems the best way 
to represent the data. 

Individual data were plotted in the same manner as group data, and 
visual inspection of the graphs indicated that eight participants integrated 
the variables according to Equation (5). Among the remaining participants, 
seven used an implied masses-only integration rule, ignoring vA, and five 
seemed to respond at random. Interestingly, the integration rule adopted by 
each participant was independent of considering the possibility of A 
bouncing back. Some participants did consider it, but responded without 
applying a definite integration rule; others did not consider the possible 
bouncing back of A but used the multiplicative-ratio rule of Equation (5).  
 
 Position of B (initially stationary). As a paired sample t-test showed 
that the effect of replication was not statistically significant, (t(639) = -
0.893, p = 0.37), two responses were averaged across replications. 
 The top right panel of Figure 4 shows the mean rated position of B, 
averaged over the three velocities of A, as a function of the implied mass of 
A (horizontal axis) for each implied mass of B (different lines). The slanted 
barrel pattern supports a ratio integration rule for the implied masses of the 
two spheres (see Anderson, 1981, p. 77).   

The bottom panel of Figure 5 shows the mean rated position of B as 
a function of the implied masses of A and B (horizontal axis) for each 
velocity of A (different lines). Two diverging curves fit the data, supporting 
a multiplicative integration rule between implied masses and the velocity of 
A. 

Since the implied masses of the two spheres were integrated 
according to the ratio rule (top right panel of Figure 4), the right panel of 
Figure 5 supports this overall multiplicative-ratio integration rule:   

 
Position B = vA × IMA / (IMA + IMB)                          (6) 
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Figure 4: Top panels: Mean rated positions of A (top left) and B (top 
right) in Experiment 2, averaged over 3 velocities of A, as a function of 
implied mass of A for each implied mass of B. Bottom panels: 
Simulations of Equation (1) (bottom left) and Equation (2) (bottom 
right) as a function of mA (horizontal axis) for each mB (different lines) 
with vA = 1 
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Figure 5. Mean rated positions of A (top) and B (bottom) in Experiment 
2 as a function of implied masses of A and B for each velocity of A. 
Since the mean rated positions of A and B were both proportional to 
difference between implied mass of A and the implied mass of B, 
ordered pairs (Implied Mass A , Implied Mass B) are plotted on 
abscissa in ascending order of difference between Implied Mass of A 
and Implied Mass of B. 
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An analysis of variance was performed to test Equation (6). All the 
main effects of all factors were statistically significant: IMA (F(3,57) = 79.9, 
p < 2.2 × 10-16 ), IMB (F(3,57) = 94.6, p < 2.2 × 10-16), and vA (F(1,19) = 
32.07, p = 1.85 × 10-5). All two-factor interactions were significant: IMA × 
IMB (F(9,171) = 7.73, p = 1.66 × 10-9), IMA × vA (F(3,57) = 3.14, p = 0.032), 
and IMB × vA (F(3,57) = 19.87, p = 6.12 × 10-9). The three-factor interaction 
IMA × IMB × vA (F(9,171) = 1.63, p = 0.11) was not significant. Like the 
statistical validation of Equation (5), the lack of the three-factor interaction 
is probably due to the wide range of variation of implied masses and 
relatively narrow range of variations of velocity of A. Despite this flaw, this 
pattern of statistical results supports Equation (6) (see Anderson, 1982, 
p.117)  

Individual data were plotted in the same manner as group data, and 
visual inspection of the graphs indicated that twelve participants integrated 
the variables according to Equation (6). Of these twelve, six had only a 
slight effect of variable vA. Of the remaining participants, five used an 
implied-masses integration rule, ignoring the velocity of A, and three 
seemed to respond at random.  
   

DISCUSSION 
 

As in Experiment 1, it was assumed that the rated positions of the two 
spheres is a linear function of their imagined post-collision velocity (see 
note 5).  

The bottom left and right panels of Figure 4 show simulations of 
Equation (1) and (2), respectively as functions of mA (horizontal axis) for 
each mB (different lines) with vA=1, as if the two spheres were real material 
spheres of density 8 g/cm3 (the mean physical density of iron) or 1 g/cm3 
(the mean physical density of polystyrene), with volume of 4.2 or 17.2 cm3.  
Figure 4 allows us to compare the cognitive integration rules for the implied 
masses of A and B (top left and top right panels, respectively) with the 
physically correct ratio integration rules as formalized by Equations (1) and 
(2) (bottom left and bottom right panels respectively). All four panels show 
a slanted barrel pattern, supporting the idea that participants used a 
physically correct ratio integration rule to integrate the implied masses of 
the spheres in order to predict the positions of A (top left panel) and B (top 
right panel) (see Anderson, 1981, p.77). However, some deviations do 
appear. 

The most conspicuous difference between the top and bottom panels 
is the non-parallelism of the second and third curves (from the top) in the 
top panels. In particular, the rate of growth of these curves is not constant, 
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as predicted by the ratio models shown in the bottom panels. The two 
curves are steeper when the implied mass of A (horizontal axis) is less than 
or equal to the implied mass of B (different lines), but are flatter when the 
implied mass of A is greater than that of B. Note that the physically correct 
ratio rules (Equations (1) and (2)) predict that the effect of a constant 
increase in the mass of A on the post-collision velocity of B decreases as the 
absolute difference between the masses of A and B increases. Thus 
participants have emphasized the physically correct ratio rule.   
 

GENERAL DISCUSSION 
 
The main findings of the above experiments are be summarized as follows: 
 (1) The data of the present experiments strongly indicate that, 
whether cognitive integration rules are isomorphic to physical rules or not, 
people are generally able to integrate various stimulus cues (e.g., velocity 
and implied masses) to make predictions about physical situations 
(Anderson, 1983). Proffitt and Gilden (1989, p. 384) argued that “…people 
make judgments about natural object motions on the basis of only one 
parameter of information that is salient in the event...”. Instead, the results 
of the present experiments show that people are able to take into account 
different sources of information in making predictions about dynamic 
events.        

(2) The extent of the misconceptions found in previous experiments 
on intuitive physics of collision effects (Legrenzi & Sonino, 1984; De Sá 
Teixeira et al., 2008) is connected to abstract 2D stimuli. Although the 
participants in the present experiments show some remarkable 
misconceptions, their overall performance (particularly in Experiment 2) is 
definitely more aligned with normative physics than that of participants in 
earlier experiments (note in particular the physically correct multiplicative 
integration rule between the velocity of A and the combined effect of the 
implied masses which was found for both spheres in both experiments).  

(3) The general cognitive integration rule for the post-collision 
position of A changed from the physically wrong multiplicative-indefinite 
rule of Experiment 1 to the physically correct multiplicative-ratio rule of 
Experiment 2. In addition, the number of participants who used the 
physically correct multiplicative-ratio rule to rate the post-collision 
positions of both spheres increased in Experiment 2. This sounds like a 
warning to researchers on intuitive physics: functional knowledge varies as 
the nature of the stimuli varies. Some misconceptions about physical 
situations in which the masses of stimuli are important, may be due to the 



Intuitive physics of collision effects 
 

469 

narrow range of variations in implied mass induced by variations in the area 
of 2D stimuli.  

 (4) The results of both Experiments 1 and 2 showed that rating the 
position of A was the harder task for participants. Previous research on the 
perception of collision effects is consistent with this finding (O’Sullivan, 
2005; White, 2009).   

(5) One striking misconception that cannot be avoided using  
realistic 3D stimuli is the failure to consider (by about half the participants) 
the possibility of A bouncing back. Surprisingly, some of the participants 
who ignored the possible bouncing back of A still used the physically 
correct multiplicative-ratio rule of Equation (6). This suggests that the 
possibility of A bouncing back is independent of the cognitive integration 
rule.  

(6) With few exceptions, in these experiments both participants who 
ignored the possibility of A bouncing back and those who did consider it 
used some algebraic rules involving the properties of both spheres to predict 
the post-collision position of A. One of the main tenets of White’s causal 
asymmetry hypothesis (2006, 2009) is that, in a collision event, we are 
generally prone to ignoring the effect that the stationary sphere (B here) 
exerts on the post-collision behavior of the moving sphere (A here). The 
results of the present experiments suggest that this was not the case. 
 

CONCLUSIONS 
 
 One of the main challenges in teaching elementary physics is closing 
the gap between what is taught and what is learned (McDermott, 1991). An 
unavoidable requirement for this is to identify the actual status of students’ 
knowledge. Differences between cognitive integration rules and normative 
physical rules should be the starting point to modify students’ status of 
knowledge, until their functional knowledge becomes reasonably similar to 
the rules of physics.   

FM and IIT provide a unique contribution in this regard, for they 
allow assessment of the functional knowledge of each single student (Karpp 
& Anderson, 1997). The data of the experiments presented here, indicate 
that the assessment of functional knowledge of the physical world is 
facilitated by using naturalistic stimuli. They also provide useful insights for 
teaching the physics of collisions. One of these is that physics teachers 
should focus on the post-collision behavior of the moving sphere (A here), 
and in particular on the possibility of its bouncing back. Participants who 
apply the correct multiplicative-ratio rule but ignore the possibility of A  
bouncing back probably only need to be informed about this fact, whereas 
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participants applying a physically wrong integration rule probably need 
more practice in order to improve their functional knowledge.   
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