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In two experiments, participants judged the average numerosity between two 
sequentially presented dot patterns to perform an approximate arithmetic 
task. In Experiment 1, the response was given on a 0–20 numerical scale 
(categorical scaling), and in Experiment 2, the response was given by the 
production of a dot pattern of the desired numerosity (numerosity 
production). The experiments found that the responses were shaped 
according to an averaging integration model. This suggests the linearity in 
the response scale of both of the response methods in the approximate 
arithmetic task. 

 

 

Numerosity, or “number sense”, is a deeper understanding of the 
meaning of numbers that occurs without the ability to count and without 
any knowledge of numerical symbols. This ability has been studied for 
many years. Binet (1890) was the first to report about numerosity. He 
informally investigated the ability of children to compare the numerosity of 
two presented collections of simple objects. Binet (1890/1969, p. 87) 
concluded: “if [the child] judges one group more numerous than another, it 
is because it occupies more space on the paper”. In 1929, De Marchi was 
the first to use a numerical evaluation of collectivities. According to De 
Marchi, the evaluation of collectivities refers to “the process by which a 
perceived aggregate is expressed by numerals in conditions that exclude any 
possibility of numbering its elements” (De Marchi, 1929/1986, p. 184). De 
Marchi acknowledged that variables influencing numerical evaluation—
such as the duration of exposure, size of the surface, occupied by the single 
collectivities, density of the exposed elements (dots), or space and time 
disposition—could together influence the evaluation in an experiment. 
Years later, studies on these same variables that were used by De Marchi 
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confirmed that the perceptual system is not able to abstract numerosity from 
other stimulus attributes (see Allik, 1989).  

 A variety of studies have demonstrated that non-human animals, 
including rats, lions, and various species of primates, have an approximate 
sense of numbers (for a review, see Dehaene, 1997). Human adults are able 
to estimate and manipulate approximate numerical magnitudes as well; this 
ability appears to be independent from language or other symbol systems, 
as it is present both in infants (Feigenson, Dehaene, & Spelke, 2004) and in 
non-human animals (Dehaene, 1997). The ability seems to be grounded in a 
general approximate system for magnitude representation, including senses 
of spatial extent and duration (Lourenco & Longo, 2011). Those senses 
have in common the ability to work across sensory modalities (e.g., vision 
and audition) and to share a “more vs. less” representational structure.  

 Since this paper focuses on arithmetic operations, it will be 
necessary distinguish between symbolic and non-symbolic aspects of 
elementary arithmetics. As defined by Dehaene (2009), “Symbolic 
arithmetic deals with how we understand and manipulate numerals and 
number words” (p. 233). Moreover, Dehaene (2009) states, “Nonsymbolic 
arithmetic is concerned with how we grasp and combine the approximate 
cardinality or “numerosity” of concrete sets of objects (such as visual dots, 
sounds, and actions)” (p. 233). The present work focuses on non-symbolic 
arithmetic. 

 The way that approximate numerical magnitudes are manipulated in 
order to judge (as opposed to calculate) the result of an arithmetic operation 
can be conceptualized as a multi-attribute judgment, with which the result is 
derived from the integration of the operands with a specific integration rule. 
This conceptualization allows for the application of the tools of Information 
Integration Theory (IIT)(Anderson, 1981; Anderson, 1982) to the study of 
mental arithmetic. Busemeyer (1991) summarizes some of the applications 
of IIT to the problem of intuitive estimations of algebraic operations on 
symbolic quantities (numbers) and continuous quantities (line lengths, 
tones, or weights). Moreover, in the field of IIT, many works use functional 
measurements to assess numerosity (Cuneo, 1982; Shanteau, Pringle & 
Andrews, 2007). Interestingly, no study has yet applied this approach to the 
investigation of the way in which the results of arithmetic operations with 
discrete quantities are computed or approximated. Thus, in the present 
work, two experiments were carried out to test the applicability of the IIT 
approach to approximate mental arithmetic of discrete quantities through 
the evaluation of the shape of the response function and of the goodness of 
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fit of the model to behavioral data. We decided to use two different 
response methods to support the generality of the result. 

 IIT describes the psychological processes underlying multi-attributes 
decision-making and proposes a general method that is applicable to several 
contexts. IIT proposes a theoretical framework (cognitive algebra), which is 
accompanied by a methodology (functional measurement) that is relevant to 
the evaluation of its adaptation to the real contexts of the proposed models. 
IIT conceives the cognitive processes that lead to the integration of more 
information in a single concept (from physical stimuli S to a behavioral 
response R), as divided into three phases: evaluation, integration, and 
response. Each of these phases is governed by a specific function (s=V(S), 
r=I(s1,s2, …, sn), R=M(r)). This evaluation process leads to the assignment 
of an implicit value s to the individual constituent parts of the stimulus S. 
This is followed by an integration of these values that, in turn, leads to the 
formulation of an overall judgment. At this level, the different models that 
describe the ways the operation of integration is performed play a crucial 
role. The cognitive algebra framework provides three models of the 
integration process: the additive model (Anderson, 1962), the multiplicative 
model (Anderson & Shanteau, 1970; Anderson & Weiss, 1971), and the 
weighted average model (Anderson, 1965; Norman, 1976), also known as 
averaging. Thus, from this perspective, we can consider an algebraic 
operation as a process of the evaluation of a stimulus S, in which the 
operands are the constituent parts (S1, S2) of that stimulus. From this point 
of view, the process of evaluation includes the assignment of internal and 
subjective values, s1 and s2 to S1 and S2. This is followed by an integration of 
these internal values with an integration function. This leads to the 
formulation of an overall judgment, which represents the result of the 
algebraic operation. The functional measurement theory includes, besides 
each s value, a weight parameter. The weight represents the importance, 
assumed by the particular attribute in the overall judgment, and it is 
indicated by the parameter w in the models. Despite the fact that the 
theoretical formulation implies a distinction between scale values and 
weights, in both the additive and multiplicative models, the two parameters 
are not really distinguishable (Anderson, 1981). The effect of each attribute 
cannot be separated into a scale value and a weight. Conversely, the 
averaging model has the capability, under specific conditions, to distinguish 
between scale values and weights (Zalinski & Anderson, 1989).  

 The averaging model of IIT represents the subject’s response to a 
multi-stimulus situation, as a weighted average. Each stimulus has two 
parameters: the weight w, which conveys the importance of the stimulus on 
the final judgment, and the scale value s, which represents its position on 
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the dimension of response (Zalinski & Anderson, 1991). The averaging 
model represents the integrated response, r, as: 
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∑          t = 1, 2,...                                                       (1) 

whereas, in a two stimuli situation, becomes: 
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The weight-value representations are common, but they are arbitrary 
in most formulations. Each weight in a standard regression model, for 
example, is confounded with the unit of the scale. The averaging model 
makes weight mathematically identifiable, and the empirical success of the 
model makes it psychologically meaningful (Zalinski & Anderson, 1991). 
The averaging model assigns weight and scale values to each stimulus. If all 
of the levels of one factor have the same weights wAi = wA, then the model is 
said to be equally weighted; if at least one of the levels differs, then the 
model is said to be differently weighted. Functional measurement makes use 
of the joint manipulation of at least two factors, according to a factorial 
design; the second block of each experiment was carried out for this 
purpose. From now on, we will refer to this as the factorial design block. 
Moreover, to differentiate the averaging model from the additive and 
multiplicative models, one or more factors at a time must be excluded from 
the factorial design; this is called a sub-design. The first experimental block 
of each experiment was meant explicitly for this purpose. From now on, the 
first block will be referred to as a sub-design block. 

EXPERIMENT 1: CATEGORICAL SCALING 
The aim of Experiment 1 was to study the integration rule, involved in 

approximate averaging operations of discrete quantities, and to evaluate the 
goodness of the fit of the averaging model to the data. First, we presented 
dot sets to participants and instructed them to indicate the numerosity of the 
sets on a 0–20 numerical scale. Later, we asked the participants to indicate 
on the same 0–20 scale the average numerosity between two sequentially 
presented dot sets. To test the integration rule that was involved in the task, 
we varied the number of presented dots systematically in a factorial design 
and in sub-designs. If the participants responded on a linearly distributed 
scale, and if they used an averaging integration rule to evaluate the 
averaging numerosity, then we would expect to find that the plot of the 
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complete factorial design was a bundle of parallel lines, along with lines 
that represent sub-designs, intersecting the bundle. 

METHOD 
Participants. Fifteen undergraduate female students from the 

University of Padua participated in the experiment. The average age of 
participants was 21.5 years (SD = .5). A convenience sampling was used, 
and the participants received no payment. 

 
Apparatus. Participants used a keyboard and a computer screen in a 

quiet room. The distance between the subject and screen was 70 cm. A 
Python program was developed in order to process the input from the 
keyboard and to control the presentation of stimuli. Importantly, the spatial 
pattern of the appearance of the dots was unpredictable. Precisely, with 
every .6 degree of clockwise rotation, one additional dot (2 mm in diameter, 
.16° of visual angle) was presented at a randomly chosen free position 
within an unmarked circular target area of 140 mm in diameter (11.42° of 
visual angle), centered on the screen. The minimum distance between the 
two dots was .25 mm (.02° of visual angle). 

 
Materials. The random dot patterns were presented in white on a 

black background. A circular gray area with a radius of 140 mm was 
presented to the participants just before the dot pattern, as an attention clue. 
Patterns of 0, 17, 38, 60, or 82 dots composed the presented stimuli; with an 
exception of the zero, the number sequence is a geometric series on a 
logarithmic scale. We used stimuli, consisting of dots and displayed in 
random positions in order to prevent the constitution of patterns that may 
have otherwise influenced the results. Random patterns are usually 
considered as preferable to other configurations because the perceptual 
structures of the dot patterns could affect their apparent visual numbers 
(Frith & Frith, 1972; Ginsburg, 1976; Krueger, 1972). We decided to use a 
circular area with a fixed radius in order to prevent the number of dots from 
being proportional to the occupied area. A similar configuration has been 
widely used in many other experiments on this topic such as the studies by 
Knops, Viarougue, & Dehaene (2009) and Piazza, Izard, Pinel, Le Bihan, & 
Dehaene, (2004). 

 
 Procedure and Design. Participants were required to rate the 

numerosity of the presented dot patterns on a 0–20 numerical scale 
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(Anderson, 1962). Participants were instructed to consider the response 
scale with none (zero) and very many (20) as scale ends. Participants were 
also instructed to type the numerical scale point value that they rated on a 
keyboard. Each subject was shown three blocks: the training block and the 
sub-design block; for which the subjects were asked to rate the numerosity 
of sets of dots; and the factorial design block, for which the subjects were 
asked to rate the average numerosity between two sequentially presented 
dots sets (the experimental procedure is depicted in Figure 1). Participants 
were instructed to respond as quickly and accurately as possible and to not 
to try to count the dots. 

 Each trial was composed of a presentation part and a production 
part. In each presentation part, a circular gray area was shown at the center 
of the screen for 1000 ms, followed by the presentation of a dot pattern for 
2000 ms. This gray area/dot pattern sequence was repeated twice. At the 
end of the presentation part of the trial, a hash mark (#) was presented for 
1000 ms. The disappearance of the hash mark indicated the beginning of the 
response phase, in which the participants could type their responses. 
Participants typed their responses on a field on the screen by typing on a 
keyboard. After the participants made their judgments, they pressed a 
button to move on to the next trial, which started after an inter-trial interval 
of 500 ms. 

 Two subjects were excluded from data analyses because they did not 
show any response consistency. 

 Training block. Eleven trials were administered in order to 
familiarize the participants with the specific task and response method 
before the experimental blocks were given. Unlike the experimental blocks, 
in the training blocks, only one quantity per trial was shown and feedback 
for the participants was provided after each trial. The training block 
provided stimuli with a number of dots that ranged from 0–100, which 
represents the two anchors of the scale (Anderson, 1982). As a form of 
feedback, the computer provided the closest value on the 0–20 scale to the 
number of shown dots, divided by 5. This training allowed for the 
calibration of the judgments of numerosity and minimized the variability, 
caused by inter-individual differences in the perception of non-symbolic 
numerosity (see Izard & Dehaene, 2008). 

 Sub-designs block. Two dot patterns were presented. The 
participants were asked to rate the numerosity of one of them, either the 
first or the second, as indicated by a signal (number 1 or 2), presented after 
the disappearance of the second dot pattern. Each pattern could have one of 
five different numbers of dots: 0, 17, 38, 60, and 82. This five-by-five 
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design yielded 25 pattern pairs. However, because no judgment different 
from 0 is plausible or informative, in response to “an empty” screen as a 
stimulus, target patterns with 0 dots were omitted; accordingly, only 20 
(i.e., 4x5) pattern pairs were presented. Each pattern pair was presented 
twice, and each time, the pattern pair was presented with a different 
indication of the pattern to rate (number 1 or 2) for a total of 40 trials, 
presented in randomized order. In summary, we collected five responses for 
each dot pattern to be evaluated, and we used the mean of the five responses 
in the following statistical analysis. 

 Factorial design block. Participants had to rate the average quantity 
of dots between two presented patterns. Each pattern could have one of five 
numbers of dots: 0, 17, 38, 60 and 82. This five-by-five design yielded 25 
pattern pairs. However, because no judgment different from 0 is plausible 
for pattern pairs with 0 dots, the (0, 0) pair was not presented; accordingly, 
only 24 (i.e., 5x5-1) pattern pairs were presented. Each pattern pair was 
presented 5 times for a total of 120 trials, presented in randomized order. In 
summary, we collected five responses for each pair of dot patterns to be 
evaluated, and we used the mean of the five responses in the following 
statistical analysis.  

 Each complete session of the experiment lasted approximately 30 
minutes. Before every block, instructions were printed on the screen. 
Participants were requested to read the instructions and explain them back 
to the experimenter to verify that they understood correctly. 

RESULTS 
Psychophysical function. The shape of the response function of the 

sub-design block was tested. The shape of the response function using a 
magnitude estimation response methods is generally best described by a 
power function, R = α×nβ with an exponent β smaller than 1 (Izard & 
Dehaene, 2008; see also Siegler & Opfer, 2003). In order to test the shape 
of the response function of the numerosity production response method, we 
performed a logarithmic regression analysis (see for instance Seber & Wild, 
2003) for the estimations of each numerosity, averaged across subjects. 
Remarkably, the regression of the averaged data fits very well in r2 = .76, 
and the resulting response function was y = .93 × n.73. 
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Figure 1. Experimental procedure for Experiment 1 (left panel) and 
Experiment 2 (right panel). The timing and sequence of events for the 
three blocks in each experiment are reported.  
 
 
 

Model identification. The responses were analyzed in order to assess 
the plausibility of integration models. The classic approach, used by the 
functional measurement for the individuation of the integration function of 
the model, is the analysis of variance (ANOVA). The theorem of 
parallelism (Anderson, 1981) argues that if the integration model is 
additive, the graph of marginal means will appear as a bundle of parallel 
lines. Morever, any observed deviation from the parallelism will be purely 
due to the component of error. Thus, an ANOVA was conducted. Because 
of the interaction between the two factors (1st and 2nd dot pattern) was not 
significant (F(15,14) = 1.52, p = .08), the deviation from parallelism can be 
considered negligible, and the multiplicative model can be discarded from 
the candidates (see Figure 2). Moreover, a significant main effect was found 
for both factors: 1st dot pattern (F(4,14) = 198.45, p < .001, η2

p = .309) and 
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2nd dot pattern (F(4,14) = 254.52, p < .001, η2
p = .36). The test of the 

opposite effects (Anderson, 1981) is used to distinguish an additive model 
from an averaging one. This test makes use of the methodology of the sub-
designs (Norman, 1976; Anderson, 1982). This methodology consists of 
associating the full factorial design with one or more sub-design(s) that 
exclude(s) one or more factor(s) at a time; the first experimental block was 
created explicitly for this purpose. The two factors (1st and 2nd dot pattern) 
were modified, adding to each one a level based on the responses of the 
sub-designs, referred to in the 1st and 2nd dot pattern. If the model was not 
additive but averaging, then a significant interaction of the two factors was 
expected. Indeed, the ANOVA showed a significant interaction effect 
(F(15,14) = 2.30, p < .001, η2

p = .014). Then, the parallelism observed in the 
full factorial design, along with the significance of the interaction, obtained 
when the sub-designs were added, might be considered as evidence in favor 
of the averaging model with equal weights within factors. It is the so-called 
equal-weight averaging model (EAM)(Wang & Yang, 1998). Moreover, for 
every factor, the significance of the main effect was found to be practically 
unaffected by the introduction of the new level, 1st dot pattern (F(4,14) = 
199.00, p < .001, η2

p = .251), 2nd dot pattern (F(4,14) = 249.52, p < .001,   
η2

p = .296). 
 

  Model estimation. After the model was identified, the averaging 
model parameters for each participant were estimated with the R-average 
method (Vidotto & Vicentini, 2007; Vidotto, Massidda, & Noventa, 2010) 
and the implemented R-average package, version 0.4-0. The following 
analyses were computed on the estimated model parameters of all the 
participants, except when noted. The adaptation of the models to the data 
was evaluated, in terms of the adjusted r2 for each subject, showing that the 
model fit the data very well for all of the participants of Experiment 1 with 
median r2

adj = .84 (ranging between .78 and .99). As previously mentioned, 
the differential-weights model (DAM) was rejected, due to the lack of 
significant effects in the interaction between the linear components of the 
factors (Anderson, 1982). The EAM weights of the 1st and 2nd dot patterns 
were compared1,  revealing  no significant  difference (t(14) = -.60, p = .21).  

                                                
1 The maximum level of uniqueness (for w) is a common ratio scale. The unit of this scale 
is arbitrary because all the weights may be multiplied by a constant without changing the 
model prediction” (Anderson 1982, p. 89). Now, considering log(w), the origin of scale is 
arbitrary but no more the unit, indeed all the log(w) may be added by a constant with no 
change in the model prediction (Vidotto, 2013). In such a way the mean of log(w) has the 
property to be reference invariant and the standard deviation of log(w) has the property to 
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Figure 2: Experiment 1: plot of the subjects’ estimations using 
categorical scaling method (mean responses are on the y-axis). In the 
complete factorial design, the number of dots identifies dashed lines for 
different numerosities of the 1st patterns while numbers of dots for the 
2st pattern are in the x-axis. In the two sub-designs, 1st and 2nd identify 
continuous lines for the 1st and 2nd dot patterns while numbers of dots 
for the pattern are in the x-axis.  
 

 

                                                                                                                       
be absolutely invariant for any vertical translation; indeed, the t-test for differences was 
applied to log(w). 
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Under a principle of parsimony, this notion led us to opt for an averaging 
model with equal weights between factors (wA = wB), which we called a 
simple averaging model (SAM). A generalized linear mixed model 
(GLMM) was then applied to the s parameters of the SAM model, using the 
participants as random variables and the two factors, numerosity (0, 17, 38, 
60, 82) and dot pattern (1st, 2nd), as fixed variables. The results showed a 
significant effect of the factor numerosity (χ2(4) = 1786.61, p < .001) with a 
strong and significant linear component. We found no statistically 
significant difference in the main effect for the dot pattern (χ2(1) = 2.82, p = 
.27) or interaction between numerosity and dot pattern (χ2(4) = 3.66, p = 
.17), showing that the difference between the two dot patterns in the s 
parameters was negligible. 
 

 Response latencies. The average latency to perform a categorical 
scaling was 4177.63 ms with a standard deviation of 1969.01 ms. It is 
important to note that the latencies were not correlated with the number of 
dots (r = .04). This result ensures that the participants were not using 
counting strategies; otherwise, we would have expected an increase in the 
reaction time with increasing numerosity (Akin & Chase, 1978; Mandler & 
Shebo, 1982; Trick & Pylyshyn, 1993). 

 

EXPERIMENT 2: NUMEROSITY PRODUCTION 
The aim of Experiment 2 was to test the appropriateness of a new 

method of numerosity production to IIT studies. We asked participants to 
indicate the numerosity of one presented dot pattern or the average 
numerosity between two sequentially presented dot patterns by producing 
that number of dots on the screen. Participants controlled the number of 
dots of their responses by turning a knob in a clockwise or counter-
clockwise direction. To test the appropriateness of the method, we varied 
the number of presented dots systematically in a factorial design and sub-
design. As in the previous experiment, we also studied the integration rule 
and evaluated the goodness of fit of the averaging model to the data. If 
participants responded on a linearly distributed scale, we would expect to 
find the plot of the complete factorial design in the shape of a bundle with 
parallel lines. 
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METHOD 
Participants. Fourteen undergraduate female students from the 

University of Padua participated in the experiment. The average age of 
participants was 20.2 years (SD = .5). A convenience sampling was used. 
The participants received no payment. 

 
Apparatus. The apparatus was identical to that in Experiment 1, 

except for the response device. The response device was a custom-made 
knob of 4.50 cm in diameter and 1.50 cm in height. The response device 
was also mounted on a small box (6 cm × 15 cm × 15 cm) and placed on a 
table. The knob was connected to a computer with a USB interface and 
could be rotated both clockwise and counter-clockwise. Knob rotation axis 
was parallel to the Cartesian z-axis. A Python program was developed to 
process the knob input and to control the stimulus presentation. The more 
the knob was rotated in a clockwise direction, the greater the number of 
dots that appeared on the screen. Rotation in the opposite direction 
decreased the number of dots, until no dots were left on the screen. 
Importantly, the spatial pattern of the appearance or disappearance of the 
dots was unpredictable. With every .6 degree of clockwise rotation, one 
additional dot (2 mm in diameter) was presented at a randomly chosen free 
position within an unmarked circular target area of 70 mm in diameter, 
centered on the screen. Counter-clockwise rotation deleted randomly 
selected dots from the display. The minimum distance between the two dots 
was .25 mm. The maximum number of dots was limited to 300.  

 
Materials. The materials used were the same as those in Experiment 

1.  
 
 Procedure and Design. The procedure and design were identical to 

those of Experiment 1, except for the response method that consisted of 
rotating the knob to produce the desired quantity of randomly distributed 
white dots (see Figure 1). Thus, the response method in this experiment was 
a numerosity production, instead of a categorical scaling. At the beginning 
of the response phase, participants could rotate the knob in order to perform 
the numerosity production task. Participants always started the response 
phase with zero dots on the screen and turned the knob clockwise to 
increase the number of dots or counter-clockwise to decrease it. 
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RESULTS 
 Psychophysical function. As for the data of the sub-design in 

Experiment 1, in order to test the shape of the response function of the 
categorical scaling response method, we performed a logarithmic regression 
analysis for the estimation of each numerosity, averaged across subjects. 
The regression of the averaged data fitted acceptably with r2 = .58. The 
resulting response function was, y = .15 × n.58. 

 
 Model identification. In Experiment 1, the responses were analyzed 

in order to assess the plausibility of integration models by performing a 5x5 
ANOVA with 1st and 2nd dot pattern as factors. Because the interaction 
between the two factors was not significant (F(15,110) = .82, p = .64), the 
deviation from parallelism can be considered negligible, and the 
multiplicative model can be discarded for this experiment, as it was for 
Experiment 1. Moreover, a significant main effect was found for every 
factor, 1st dot pattern (F(4,11) = 162.35, p < .001, η2

p = .28), 2nd dot pattern 
(F(4,11) = 227.90, p < .001, η2

p = .358). The two variables (1st and 2nd dot 
pattern) were modified, adding to each one a level that was made from the 
ratings on single-dot patterns (the sub-design). If the model was not 
additive, but averaging, it was expected that the addition of the new levels 
to the factors would involve a significant interaction between the two. 
Subsequently, the ANOVA showed a significant interaction effect 
(F(15,110) = 2.21, p < .001, η2

p = .01). Then, the parallelism between the 
factors of the full factorial design and the interaction, caused by the adding 
of sub-designs (see Figure 3) was found to be evidence in favor of EAM, as 
in Experiment 1. Moreover, for each factor, the significance of the main 
effect was found to be practically unaffected by the introduction of the new 
level, 1st dot pattern (F(4,11) = 172.12, p < .001, η2

p = .241), 2nd dot pattern 
(F(4,11) = 229.78, p < .001, η2

p = .298). 
 
Model estimation. After the model was identified, the averaging 

model parameters for each participant were estimated with the same 
procedure that was previously applied in Experiment 1. The adaptation of 
the models to the data was evaluated in terms of adjusted r2, showing that 
the model fitted the data very well for almost all of the participants with 
median r2

adj = .85 (ranging between 71 and 99). As previously mentioned, 
the DAM was rejected because it did not present a significant effect in the 
interaction between the linear components of the factors. The EAM weights 
of the first and the second dot patterns were compared, which revealed no 
significant difference (t(11) = 1.79, p = .56). This led us to opt for a SAM. 
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A GLMM was then applied to the s parameters of the model, using the 
participants as random variables and the two factors of numerosity (0, 17, 
38, 60, 82) and dot pattern (1st, 2nd), as fixed variables. We found that there 
is a statistically significant difference in the main effect for numerosity 
(χ2(4) = 4044.78, p < .001) but not for the dot pattern (χ2(1) = 1.50, p=.13) 
or for the interaction between numerosity and dot pattern (χ2(4) = 5.02, p = 
.10). This shows that the difference between the two dot patterns in the s 
parameters was negligible. 

 
Response latencies. The average latency to perform a categorical 

scaling was 3880.13 ms (SD = 2229.38). Importantly, the latencies were not 
correlated with the number of dots (r = .039), ensuring that the participants 
were not using counting strategies, which was also the case in Experiment 
1. 

DISCUSSION AND CONCLUSIONS 
In both experiments, the participants responded quickly, and their 

response times did not increase with numerosity. This reveals that the 
participants did not use counting strategies but instead, based their 
judgments on approximate numerosity estimation. In both of the 
experiments, the results of the analysis on the estimated averaging values 
seemed to indicate that the subjects’ estimations are best described by an 
EAM. Moreover, the weights of the two dot patterns do not appear to differ 
significantly, suggesting the use of a SAM. Accordingly, the scale values 
vary, depending only on the numerosity of the stimulus and are unaffected 
by its position (1st or 2nd dot pattern). This demonstrates that neither the 
effect of primacy nor the effect of recency influence the evaluation of the 
average numerosity, despite the sequential temporal order of the 
presentation of the stimuli (Busemeyer, 1991). In other words, this means 
that the participants give the same importance to the two quantities of each 
trial during averaging operations. 

 In both experiments, the adjusted r2 showed that SAM was able to 
explain a very great portion of variance for almost all of the participants; 
this supports the explanatory capability of the averaging model, applied to 
mental arithmetic problems with discrete quantities. Since the participants 
were instructed to perform an averaging operation, the factorial plot should 
exhibit parallelism, if the response measure was on a linear scale. As shown 
in Figures 2 and 3, and according to the results of the full factorial design 
ANOVA (without sub-designs), the rating data (Figure 2) and the 
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numerosity production data (Figure 3) show clear parallelism. This allows 
researchers to validate the numerosity production, as a response measure on 
a linear scale, a prerequisite for a method to study stimulus interaction, and 
for the analysis of non-linear integration rules (Anderson, 1982).  

 

 
 
Figure 3: Experiment 2: plot of the subjects’ estimations using 
numerosity production method (mean responses are on the y-axis). In 
the complete factorial design, the number of dots identifies dashed lines 
for different numerosities of the1st pattern while the numbers of dots 
for the 2st pattern are in the x-axis. In the two sub-designs, 1st and 2nd 
identify continuous lines for the 1st and 2nd dot patterns while the 
numbers of dots for the pattern are in the x-axis.  
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The linearity of the response scale and the similar trends of the two 
response methods paves the way for further interesting possibilities of 
application of the IIT framework for the numerosity production response 
method. The applicability of IIT to mental arithmetic problems with discrete 
quantities is supported with the following factors: the linearity of the scale 
observed with both of the response methods and the high explanatory 
capability demonstrated by the averaging model in both experiments. 

On the other hand, since we used a series of stimuli, composed by dot 
collectivities, distributed on a fixed radius circular area and manipulated the 
number of dots, it may be argued that the density of dots in each stimulus 
may have influenced the participants’ impressions of numerosity (Krueger, 
1972; Allik & Tuulmets, 1991; Shanteau et al., 2007). We believe that the 
variation in density, along with the levels of the factors, do not weaken our 
conclusions. This is because even if the numerosity judgment was based on 
the density of the stimulus, it does not change the way that the internal 
representations of the stimuli were integrated. Furthermore, this does not 
change the conclusions about the parallelism and linearity of the response 
functions. Since the effect of over- or under-evaluation, linked to the 
specific density of each level of each factor is proportional to the size of the 
stimulus, and since it remains constant for that level to every proposition in 
the factorial design, this does not affect the nature of the model but affects 
only its scale values. 

The averaging model of IIT was established as a viable instrument in 
assessing mental arithmetic with discrete quantities; it is able to properly 
describe behavioral data, distinguishing between the value of the evaluation 
of a stimulus and its importance in the integration process. Moreover, a new 
numerosity production method was tested for the linearity of its response 
scale. Finally, averaging operations with discrete quantities appear to not be 
affected by the presentation order of the dot patterns. For all of these 
reasons, the IIT framework seems to be a promising approach, particularly 
for future applications in the field of mental arithmetic with discrete 
quantities.  

REFERENCES 
Akin, O., & Chase, W. (1978). Quantification of three-dimensional structures. Journal of 

Experimental Psychology: Human Perception and Performance, 4, 397-410. 
Allik, J. (1989). Is a unified psychophysical law realistic. Behavioral and Brain Sciences, 

12(2), 267-268. 
Allik, J., & Tuulmets, T. (1991). Occupancy model of perceived numerosity. Perception & 

Psychophysics, 49(4), 303-314. 



A Functional Measurement study on averaging numerosity 439 

Anderson, N. H. (1962). Application of an additive model to impression formation. 
Science, New Series, 138(3542), 817-818. 

Anderson, N. H. (1965). Averaging versus adding as a stimulus combination rule in 
impression formation. Journal of Experimental Psychology, 70(4), 394-400. 

Anderson, N. H. (1981). Foundation of information integration theory. New York: 
Academic Press. 

Anderson, N. H. (1982). Methods of information integration theory. New York: Academic 
Press. 

Anderson, N. H., & Shanteau, J. C. (1970). Information integration in risky decision 
making. Journal of Experimental Psychology, 84(3), 441-451. 

Anderson, N. H., & Weiss, D. J. (1971). Test of a multiplying model for estimated area of 
rectangles. American Journal of Psychology, 84, 543-548. 

Binet, A. (1969). Children's perceptions. In R. H. Pollack & M. J. Brenner (Trans., 
Eds.), The experimental psychology of Alfred Binet (pp. 93-126). New York: 
Springer. (Original work published 1890). 

Busemeyer, J. R. (1991). Intuitive statistical estimation. In N. H. Anderson (Ed.), 
Contributions to information integration theory. Volume 1: Cognition. Hillsdale, 
New Jersey: Lawrence Erlbaum. 

Cuneo, D. O. (1982). Children's judgments of numerical quantity: A new view of early  
quantification. Cognitive Psychology, 14, 13-44 
Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York: 

Oxford University Press. 
Dehaene, S. (2009). Origins of Mathematical Intuitions: The case of arithmetic. Annals of 

the New York Academy of Sciences, 1156, 232–259. 
De Marchi, S. (1986). Numerical evaluations of collectivities. (S. C. Masin, Trans.). 

(Original work published 1890). Retrieved from 
http://www.psy.unipd.it/~masin/DeMarchi1929.pdf 

Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in 
Cognitive Science, 8(7), 307–314. 

Frith, C.D., & Frith, U. (1972). The Solitaire Illusion: An illusion of numerosity. 
Perception and Psychophysics, 11, 409-410. 

Ginsburg, N. (1976). Effect of item arrangement on perceived numerosity: Randomness vs 
regularity. Perceptual & Motor skills, 43, 663-668. 

Izard, V., & Dehaene, S. (2008). Calibrating the mental number line. Cognition, 106(3), 
1221-1247. 

Knops, A., Viarouge A., & Dehaene, S. (2009). Dynamic representations underlying 
symbolic and non-symbolic calculation: Evidence from the operational momentum 
effect. Attention, Perception & Psychophysics, 71(4), 803-821. 

Krueger, L. E. (1972). Perceived numerosity. Perception & Psychophysics, 11, 5-9. 
Lourenco, S. F., & Longo, M. R. (2011). Origins and the development of generalized 

magnitude representation. In S. Dehaene & E. Brannon (Eds.), Space, time, and 
number in the Brain: Searching for the foundations of mathematical thought (pp. 
225-244). London, England: Elsevier. 

Mandler, G., & Shebo, B. (1982). Subitizing: An analysis of its component process. 
Journal of Experimental Psychology: General, 111, 1-22.   

Norman, K. L. (1976). A solution for weights and scale values in functional measurement. 
Psychological Review, 83(1), 80-84. 

Piazza, M., Izard, V., Pinel, P., LeBihan, D., & Dehaene, S. (2004). Tuning curves for 
approximate numerosity in the human parietal cortex. Neuron, 44(3), 547-555. 



 M.D. Tira, et al. 440 

Shanteau, J., Pringle, L. R., & Andrews, J. A (2007). Why functional measurement is (still) 
better than conjoint measurement: judgment of numerosity by children and 
adolescents. Teorie & Modelli, 12, 199-210. 

Seber, G. A. F., & Wild, C. J. (2003). Nonlinear Regression. New York: Wiley-
Interscience. 

Siegler, R. S., & Opfer, J.E. (2003). The development of numerical estimation: Evidence 
for multiple representations of numerical quantity. Psychological Science, 14(3), 
237-243. 

Trick, L., & Pylyshyn, Z. (1993). What enumeration studies can show us about spatial 
attention: Evidence for limited capacity preattentive processing. Journal of 
Experimental Psychology: Human  Perception and Performance, 19, 331-351. 

Vidotto G. (2013). Note on differential weight averaging models in functional 
measurement. Quality & Quantity, 47(2), 811-816. 

Vidotto, G., Massidda, D., & Noventa, S. (2010). Averaging models: Parameters 
estimation with the R-Average procedure. Psicòlogica, 31(3), 461-475. 

Vidotto, G., & Vicentini, M. (2007). A general method for parameter estimation of 
averaging models. Teorie & Modelli, 12(1-2), 211-221. 

Wang, M., & Yang, J. (1998). A multi-criterion experimental comparison of three multi-
attribute weight measurement methods. Journal of Multicriteria Decision Analysis, 
7(6), 340-350. 

Zalinski, J., & Anderson, N. H. (1989). Measurement of importance in multi-attribute 
models. In J. B. Sidowski (Ed.), Conditioning, cognition, and methodology. 
Contemporary issues in experimental psychology (pp. 177-215). Lanham, Mariland: 
University press of America. 

Zalinski, J., & Anderson, N. H. (1991). Parameter estimation for averaging theory. In N. H. 
Anderson (Ed.), Contributions to information integration theory. Volume I: 
Cognition (pp. 353-394). Hillsdale, New Jersey: Lawrence Erlbaum Associates. 
 

 
(Manuscript  received: 21 November 2013; accepted: 22 June 2014) 

 


